滴滴26届正式批-算法工程师-起终点引擎-地图
校招全职算法类地点:北京状态:招聘
任职要求
1、2026届毕业生,本科及以上学历,计算机、电子工程、自动化、数学等相关专业优先 2、编程基础扎实,熟悉常用算法与数据结构,至少熟悉一门编程语言并有开发经验,如C++、Java、Scala、 Python等 3、有机器学习、 数据挖掘、计算机视觉与图像处理、语音识别与合成、自然语言处理、统计学、 最优化理论、分布式计算、自动控制等至少一个方向相关基础,有相关项目经验者优先 4、了解海量数据处理技术,有使用Hadoop、Hive、Spark等大数据平台分析海量数据的能力和经验者优先 5、踏实勤奋、自我驱动、善于沟通、动手能力强、视野开阔,具有创造性思维。
工作职责
1、参与基于滴滴海量用户行为数据的上下车点推荐系统构建,包括召回,精排模型的优化等 2、参与基于大模型的POI数据建设,通过对多模态数据、地理位置、用户行为和LLM、NLP技术结合,打造最精准的POI数据体系 3、参与目的地检索推荐技术研发,包括向量召回、精排模型、检索agent等技术迭代。
包括英文材料
学历+
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Scala+
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
图像处理+
https://opencv.org/blog/computer-vision-and-image-processing/
This fascinating journey involves two key fields: Computer Vision and Image Processing.
https://www.geeksforgeeks.org/python/image-processing-in-python/
Image processing involves analyzing and modifying digital images using computer algorithms.
https://www.youtube.com/watch?v=kSqxn6zGE0c
In this Introduction to Image Processing with Python, kaggle grandmaster Rob Mulla shows how to work with image data in python!
语音识别+
https://www.youtube.com/watch?v=mYUyaKmvu6Y
Learn how to implement speech recognition in Python by building five projects.
https://www.youtube.com/watch?v=sR6_bZ6VkAg
How Rev.com harnesses human-in-the-loop and deep learning to build the world's best English speech recognition engine
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
相关职位
校招算法类
1、参与智能客服场景相关模型的应用落地及算法迭代,优化智能问答、智能分析、智能辅助效果 2、参与智能对话机器人的模型训练与调优,持续提升机器人语义理解、流畅对话能力,提升智能客服解决问题的能力 3、参与建设客服领域多模态模型的算法设计和训练,优化推理速度和效果 4、深入理解业务,对业务诉求进行合理的抽象和建模,构建灵活易用的数据处理-训练-推理 pipeline。
更新于 2025-08-21
校招算法类
1、负责网约车各环节最中心的交易引擎策略设计,包括订单分配/运力调度 / 用户推荐 / 拼车合乘等核心算法的设计与开发,提高交易引擎效率及平台用户体验 2、搭建交易引擎模拟环境以及基础的用户及供需的建模,为策略、运营、产研团队提供可靠的基础环境,支撑业务高速发展 3、技术栈为机器学习、强化学习、运筹优化、因果推断等,结合业务需求进行建模,解决线上实际问题。
更新于 2025-08-18
校招算法类
1、负责网约车各环节最中心的交易引擎策略设计,包括订单分配/运力调度 / 用户推荐 / 拼车合乘等核心算法的设计与开发,提高交易引擎效率及平台用户体验 2、搭建交易引擎模拟环境以及基础的用户及供需的建模,为策略、运营、产研团队提供可靠的基础环境,支撑业务高速发展 3、技术栈为机器学习、强化学习、运筹优化、因果推断等,结合业务需求进行建模,解决线上实际问题。
更新于 2025-08-18