滴滴数据挖掘资深算法工程师(J250625027)
社招全职2年以上技术地点:北京状态:招聘
包括英文材料
学历+
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
XGBoost+
[英文] What is XGBoost?
https://www.ibm.com/think/topics/xgboost
XGBoost (eXtreme Gradient Boosting) is a distributed, open-source machine learning library that uses gradient boosted decision trees, a supervised learning boosting algorithm that makes use of gradient descent.
https://www.youtube.com/watch?v=BJXt-WdeJJo
takes a deep dive into one of the most powerful machine learning algorithm, eXtreme Gradient Boosting, using a Jupyter notebook with Python.
Pandas+
[英文] 10 minutes to pandas
https://pandas.pydata.org/docs/user_guide/10min.html
This is a short introduction to pandas, geared mainly for new users.
[英文] Cookbook - pandas
https://pandas.pydata.org/docs/user_guide/cookbook.html#cookbook
This is a repository for short and sweet examples and links for useful pandas recipes.
https://www.kaggle.com/learn/pandas
Solve short hands-on challenges to perfect your data manipulation skills.
https://www.youtube.com/watch?v=2uvysYbKdjM
I'm super excited for this one. We're doing another complete Python Pandas tutorial walkthrough.
https://www.youtube.com/watch?v=Mdq1WWSdUtw
Filtering, Joins, Indexing, Data Cleaning, Visualizations
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
GIS+
https://www.osgeo.org/resources/learn-gis-free-complete-course/
Learning GIS, especially a modern GIS approach, can seem overwhelming, but this video explains how to take a four-step process to learn modern GIS and some tools to help you get started!
https://www.youtube.com/watch?v=n9dDsYLIx1c
Learning GIS, especially a modern GIS approach, can seem overwhelming, but this video explains how to take a four-step process to learn modern GIS and some tools to help you get started!
相关职位
社招4年以上技术
1.负责国际收单、钱包等场景的支付风险识别&决策模型的选型、开发和优化,负责模型部署应用、维护、监控和升级迭代; 2.深入理解国际支付业务和风险,总结和提炼用户行为序列、欺诈、赌博、洗钱、诈骗等风险特征,并对特征挖掘结果进行评估和验证; 3.负责建模流程优化,提升模型开发和部署效率,降低模型维护成本; 4.基于图算法、时序算法等对用户风险进行识别,在小样本、无样本场景上能够通过无监督、半监督、元学习等算法对风险进行有效识别。 5.研究前沿机器学习算法在支付风控领域的实践和应用。
更新于 2025-06-09

社招4年以上技术类
岗位职责: 1、负责电商风控相关反欺诈、薅羊毛等业务对应算法模型的需求对接、开发、落地与维护; 2、负责风控机器学习算法的研发、评估和实施,包括前沿算法能力搭建与应用等; 3、协助业务部门提升整体风控能力,降低业务场景整体风险; 4、为相关风控业务提供数据挖掘及机器学习方面的模型服务支持。
更新于 2023-12-26

社招3年以上技术
职位描述 1、基于哈啰数据平台和机器学习平台对普惠用车宏观供需和用户画像开展实践研究以实现业务目标,包括但不限于数据挖掘、数据分析和算法工程落地等; 2,研发和实现统一的供需模型,为跨职能团队提供供需决策能力和闭环策略; 3,沉淀通用的供需数据驱动能力,建设相关的平台系统,提升系统迭代效率和迭代效果; 4,和上下游业务、产品等跨只能团队密切协作,推动产品的进化;
更新于 2025-08-07