滴滴国际事业群IBG-算法实习生
实习兼职技术类地点:杭州状态:招聘
任职要求
1 学历与专业:计算机科学、数学、统计学、人工智能或相关专业的本科及以上学历(在读硕士/博士优先)。 2 编程能力:熟练掌握至少一种编程语言(如 Python、C++、Java),熟悉常见数据结构与算法。 3 技术基础:熟悉机器学习基本概念(如回归、分类、聚类)和常见框架(如 TensorFlow、PyTorch、Scikit-learn)。了…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
参与LLM在触达文案生成的前沿算法调研与落地
包括英文材料
学历+
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
还有更多 •••
相关职位
实习算法类
1、运用机器学习(因果推断,时序预测,转化率预估)、运筹优化、强化学习等前沿算法和技术,构建相关模型策略,驱动司乘动态定价; 2、参与定价算法策略开发及落地,支持滴滴全球业务;
更新于 2025-09-05杭州
实习技术类
1. 使用NLP、CV、多模态大模型等技术分析评论、投诉等反馈数据,构建反馈数据的标签体系。 2. 基于大模型微调,深度理解多模态内容,实现用户反馈理解垂直大模型。 3. 基于反馈标签,构建反馈指标体系,深度挖掘反馈标签的应用价值。 4. 需要基于大模型的AI Agent全生命周期研发,包括通用型及垂直领域AI Agent的应用架构设计、数据构建、模型训练与评测 5. 在作弊风险研判,样本辅助标注等场景应用大模型帮助定性,与上下游协作优化应用效率
更新于 2025-12-25北京