
地平线视觉深度学习算法工程师(道路结构认知)
社招全职2年以上算法序列地点:北京 | 上海状态:招聘
任职要求
任职要求: 1、计算机视觉、机器学习、自动驾驶等相关专业硕士/博士学历,2年以上自动驾驶感知算法研发经验; 2、在目标检测、分割、跟踪、多任务学习、立体视觉等领域有扎实积累,顶会论文(CVPR/ICCV等)或顶级赛事排名者优先; 3、精通PyTorch框架,具备大规模模型训练与优化经验; 4、深入理解数据结构与算法,熟练掌握Python或C++; 5、熟悉模型部署(TensorRT/ONNX等)及嵌入式优化(如ARM/GPU)者更优; 6、强烈的技术热情与自驱力,能通过数据闭环发现问题并推动算法边界; 7、优秀的跨团队协作能力,适应自动驾驶快节奏技术攻关。 我们提供: 参与行业领先智能驾驶系统的核心算法研发机会; 与顶尖团队共同探索技术无人区,成果直接赋能高阶量产项目;
工作职责
1、全场景道路环境感知算法研发:主导城区、高速、泊车等多场景下的道路环境认知算法开发,基于深度学习模型实现车端的车道线、交通灯、停车位等关键要素的高保真检测与端到端建模,或通过静态要素的云端大模型赋能无图端到端系统精准感知; 2、模型优化与性能突破:负责感知模型的开发、验证与持续迭代,通过算法创新与工程优化,确保车辆“看得清、认得准”,提升复杂场景下道路环境的鲁棒性与实时性; 3、算法创新与工程落地:主导核心算法/模型的前沿设计,推动从理论到产品的全链路落地,包括模型轻量化、部署优化及评测体系构建;
包括英文材料
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
学历+
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
ONNX+
https://github.com/onnx/tutorials
Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models.
[英文] Introduction to ONNX
https://onnx.ai/onnx/intro/
This documentation describes the ONNX concepts (Open Neural Network Exchange).
相关职位

社招
负责地图元素的检测,道路结构的认知,导航车道的选择等模型和算法的设计,实现,评估,验证,和部署 负责离线模型的开发以提升自动标注 负责数据挖掘,算法的迭代,持续的提升高速和城区的自动驾驶产品性能。
更新于 2024-10-12
社招IDG
-负责计算机视觉相关深度学习算法研发,系统及产品落地工作 -研发方向包括但不限于:目标检测,多目标跟踪/运动估计,道路结构感知,交通信号识别等 -负责相关视觉算法系统优化,实现产品快速迭代,满足业务产品需求 -处理大规模数据集,进行数据清洗、特征提取、模型训练和评估,优化算法的性能和效果
更新于 2025-09-26

社招2年以上算法序列
1. 负责ADAS、Parking、城区/高速NOA场景下的感知算法研发,包含车道线、停车位、斑马线、箭头等路面标识检测模型,以及交通灯、标识牌检测等模型开发工作。 2. 基于Transformer/GNN实现数据驱动的车端道路拓扑模型搭建; 3. 负责核心算法或模型的原创设计以及工程化落地,如模型优化、评测体系化构建、case迭代等 4. 掌握数据挖掘、标注、训练、部署及badcase回归等闭环链路,并伴随业务开展持续优化;掌握通过数据闭环持续迭代模型的能力;
更新于 2024-09-05