logo of xiaohongshu

小红书【Ace顶尖实习生】多智能体端到端强化学习技术研究

实习兼职大模型地点:北京 | 上海 | 杭州状态:招聘

任职要求


1、不限年级,本科及以上在读,计算机/人工智能/软件工程等相关专业优先;
2、优秀的代码能力、数据结构和基础算法功底,熟悉Python等至少一门编程语言;
3、熟悉大模型领域尤其是强化学习相关研究工作和算法,有大模型强化学习的研发基础;
4、在ICML/CVPR/NeurIPS/ACL等顶级期刊会议上发表论文者优先;
5、良好的沟通协作能力,责任心强,积极主动,能和团队一起探索新技术,推进技术进步。

工作职责


多智能体已成为AI应用领域的关键技术,如何通过多智能体协作解决复杂任务是AI应用领域的研究热点。

本课题拟聚焦于端到端强化微调技术,通过事务级的规划和行动,结合代码生成、界面交互等能力对全场景工具进行调用,显著提升AI系统端到端解决复杂任务的能力。该研究将支持旅行攻略生成、运动健康规划等应用场景,重新定义AI垂类应用的能力边界和业务价值。
包括英文材料
数据结构+
算法+
Python+
大模型+
强化学习+
ICML+
CVPR+
NeurIPS+
相关职位

logo of xiaohongshu
实习引擎

本课题研究如何优化向量检索技术以增强大型语言模型能力。 主要方向包括: 1、优化高维向量索引结构,实现千亿级多模态数据的高效检索; 2、设计多Agent场景下的智能检索增强生成(Agentic RAG)策略,探索检索结果与大模型上下文的最优融合方法; 3、研究基于向量检索优化大模型推理过程中的KV Cache机制,为智能体应用的效果优化和大模型推理提供关键技术支持。

logo of xiaohongshu
实习内容理解

本课题希望探索有效的统一大模型基座方案及提升多场景联合预训练的效果。目前公司内部不同业务场景下存在多套Embedding&标签大模型,部署成本较高,且应用在下游端到端建模任务如序列推荐时也多有不便,希望在多场景下对多套不同的Embedding&标签做整合,共用一套统一的基座模型,降低部署成本。同时通过融合的方式,对多场景数据进行综合建模,提升多场景的Embedding&标签效果。 统一基座模型需要解决的核心技术难点包括: 1、基座统一但仍可支持业务的定制微调,且训练成本和推理成本较低; 2、多体裁内容(如笔记、直播、商品、Query等)的理解可以融合在一个统一模型,且效果比独立训练更好。 研究方向会针对要解决的问题设立,包括:基于多Head或MoE的轻量化微调及融合推理、多体裁内容形式的统一建模。

logo of xiaohongshu
实习客户端开发

深入研究和应用AI大模型技术,对工程架构做全面设计,推动架构智能化升级,确保系统具备高扩展性、高稳定性和高性能,以适应不断变化的业务需求和数据量的增长。

logo of xiaohongshu
实习基础后端

本课题聚焦在多模态数据场景下如何高效的组织其向量索引数据,设计并实现配套的混合查询优化技术,能根据用户请求动态选择合理的索引组合,实现耗时、吞吐的合理平衡。 预期成果是能用单一向量数据库产品原生支持异构多模态数据的向量索引构建和混合查询,为多模态大模型场景提供高效的向量支持。

更新于 2025-07-19