小红书大模型分布式训练引擎研发工程师(实习)
实习兼职引擎地点:北京 | 上海状态:招聘
任职要求
任职资格: 1、优秀的代码能力、数据结构和基础算法功底,熟悉Python开发,熟悉 Linux/Git开发环境; 2、有较好的学习能力、沟通协作能力和自驱力,能和团队一起探索新技术,推进技术进步(⭐️有大牛带着成长) 2、熟悉至少一种主流基础深度学习训练框架(TensorFlow/PyTorch/PaddlePaddle等)的使用和实现; 3、了解主流LLM模型结构,使用过至少一种主流LLM训练框架(Megatron-LM/DeepSpeed/veRL等); 加分项: 1、熟悉DP/TP/PP/ZeRO等分布式训练策略原理,有大模型训练调优分析经验者优先; 2、熟悉至少一种AI编译加速组件者优先,包含但不限与TorchInductor/TVM/Triton/XLA等; 3、了解并行计算、网络通信、系统优化和集群硬件架构等相关知识者优先; 4、了解 GPU 硬件架构和 GPU 软件栈(CUDA,cuDNN),具备一定的 GPU 性能分析的能力; 5、熟悉NCCL/RDMA/IB/RoCE相关知识者优先; 6、有优秀开源项目经历者优先。
工作职责
工作职责: 1、参与千亿级大模型的分布式强化学习 RL 训练框架研发,提升百卡~千卡级训练吞吐与资源利用率 2、参与 100B以上多模态强化学习算法流程适配(如DAPO等),各领域任务的 RL 正确性验证 3、实验并调优不同并行策略(Tensor/ZeRO/FSDP/Pipeline Parallelism)在超大规模模型上的最佳配置组合 4、协助定位分析分布式训练中的关键性能瓶颈(如GPU利用率低、显存瓶颈、网络通信阻塞、I/O延迟等),设计并实施优化方案进行验证。 5、参与研发/优化训练引擎的关键特性,如大规模集群下的稳定断点续训、高性能异步Rollout机制、以及高性能算子(Kernel)的集成与优化。
包括英文材料
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
Git+
https://www.youtube.com/watch?v=rH3zE7VlIMs
Learn Git from start to finished in this full course written by ThePrimeagen.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
PaddlePaddle+
https://learnopencv.com/paddlepaddle/
PaddlePaddle (PArallel Distributed Deep LEarning) is an open-source deep learning framework released by Baidu in 2016.
https://www.paddlepaddle.org.cn/tutorials
本课程采用飞桨特色的「横纵式」 教学法,从易到难,学习难度逐层递进,并结合图形和案例进行讲解,力求让刚接触深度学习的读者可以快速理解。
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Megatron+
https://www.youtube.com/watch?v=hc0u4avAkuM
DeepSpeed+
https://www.youtube.com/watch?v=pDGI668pNg0
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
相关职位
实习机器学习平台
1、研发面向大语言/多模态/CV/NLP等类型模型的训练框架; 2、参与训练框架研发优化,包括分布式训练及微调工具链、训练性能优化、数据读取等AI基础设施的建设等; 3、与公司各算法部门深度合作,参与大语言模型、多模态大模型、计算机视觉、语音、自然语言处理等业务训推任务的优化提效; 4、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等。
实习J1014
1、参与快手大规模深度学习推理引擎、大模型训练解决方案的研发与优化,包括大模型推理、模型训练框架、微调平台等; 2、参与底层算子的优化、通过优化访存pattern、计算提升推理性能,与算法部门合作,为公司大模型定制训练方案,探索RLHF、MoE、多模态、longcontext等前沿方向,提升训练性能; 3、优化推理框架上层调度策略,通过机内、机间的计算任务调度和通讯优化提升引擎性能;优化现有大语言模型相关工具和平台,提高模型训练、维护效率,降低成本,提升训练服务稳定性。
更新于 2025-05-23
实习J1020
1、参与快手大规模深度学习推理引擎、大模型训练解决方案的研发与优化,包括大模型推理、模型训练框架、微调平台等; 2、参与底层算子的优化、通过优化访存pattern、计算提升推理性能。与算法部门合作,为公司大模型定制训练方案,探索RLHF、MoE、多模态、longcontext等前沿方向,提升训练性能; 3、优化推理框架上层调度策略,通过机内、机间的计算任务调度和通讯优化提升引擎性能;优化现有大语言模型相关工具和平台,提高模型训练、维护效率,降低成本,提升训练服务稳定性。
更新于 2025-06-04