logo of xiaohongshu

小红书【REDstar】Hi Lab-语音端到端交互大模型算法工程师

校招全职大模型地点:北京 | 上海状态:招聘

任职要求


1、本科及以上学历,计算机等相关专业方向优先;
2、熟练掌握代码的阅读和编写技术,善于利用AI编程,在pythonpytorch技术栈上有深入实践;
3、对语音领域有深入的实践和理解,有一定深度的专业认知和见解;
4、具备良好的科学研发习惯、问题定义能力和对细节的敏锐度。

工作职责


参与端到端语音交互大模型的研发工作,主要负责:
1、搭建端到端交互模型架构,探索不同潜在可能性,找出更优的方案,在智商/情商/延迟/成本上达到平衡;
2、持续优化数据pipeline,提升数据质量,在千万小时数据上挖掘金矿;
3、全面提升语音理解能力,包括但不限于ASR/说话人识别/情感等富语言信息;
4、优化模型TTS效果,持续优化tokenizer,提升合成效果。
包括英文材料
学历+
Python+
PyTorch+
相关职位

logo of xiaohongshu
校招大模型

1、Post-Training Pipeline 设计与迭代:搭建并持续优化 SFT、RM、RLHF/RLAIF/ RLVF 等后训练流水线,支持多模态模型的高效迭代,让千亿级大模型在一次次“后训练”中真正变得聪明、智慧、安全; 2、可扩展监督与反馈系统:设计低成本人类 + AI 组合反馈机制,自动化完成偏好采集、对齐传递与数据质量评估,通过 Product-Research co-design 探索构建真实用户反馈的模型迭代机制; 3、通用推理与工具使用能力提升:构建跨模态强化学习环境和多样化奖励体系,帮助模型学会调用外部工具、提升模型利用文本-图像-语音跨模态信息进行复杂推理和问题解决能力; 4、长期记忆、个性化与终身学习:探索持久记忆与动态偏好建模,使模型能够跨会话记住用户偏好、持续学习而不遗忘核心能力; 5、安全评估与价值观对齐:搭建安全对齐机制、红队测试、越狱防御与自动化评测框架,量化模型幻觉、稳定性及价值观一致性,制定风险缓解策略,确保模型在开放场景中始终行为可控; 6、跨职能落地:与产品、设计、人文训练师及数据团队,把研究成果迅速推向真实场景,打造小红书下一代战略级 AI native 应用产品。

更新于 2025-09-06
logo of xiaohongshu
校招大模型

文本大模型团队的主要负责小红书大语言模型的端到端全链路自研。主要研究方向包括: 1、持续探索大语言模型在不同阶段的高效scaling策略; 2、预训练的关键技术探索: 包括从数据策略(筛选,配比,合成,学习效率的提升)、优化技术、可解释性,到下一代模型结构的设计、long context建模、学习范式探索等; 3、通用alignment技术探索: 包括大规模RL的探索,持续提升大模型在通用能力、reasoning、长文本、agent、各方向中长尾知识等多个方向的综合能力,支撑更广泛的应用场景; 4、跟下游的多模态同学一起探索端到端全模态大模型的设计和高效scaling策略; 团队有充足的GPU计算资源,同时跟整个技术社区也有密切合作,开源开放。

更新于 2025-10-18
logo of xiaohongshu
校招大模型

大模型AI Infrastructure团队专注于大语言模型领域的前沿技术研究和落地,提供高性能、高可靠、可扩展的机器学习系统、丰富的异构计算资源和极致的端到端的机器学习服务体验,为公司提供核心技术能力和服务。 1、负责机器学习框架的研究与开发,服务于公司各个产品; 2、高效部署,优化NLP/多模态大模型核心业务模型。

更新于 2025-09-06
logo of xiaohongshu
校招策略算法

1、负责小红书搜广推多场景召回与排序模型优化,提升时长、互动、留存等核心指标; 2、核心技术方向包括:LLM应用于推荐系统,基于搜广推全域信号打通的图神经网络预训练模型,深度进化学习应用于全系统参数自动搜索,多模态在召回/排序等模块的应用等技术方向;在小红书独特的双列社区产品形态下,探索最适合社区产品的种草拔草全链路建模范式; 3、业务落地场景包括:双列推荐/展示/搜索/电商广告的模型,用户/资源冷启动,重排和多资源混排场景等。