小红书推荐算法工程师-社区算法
社招全职内容理解地点:北京 | 上海状态:招聘
任职要求
1、全日制统招计算机或相关专业硕士及以上学历; 2、在机器学习,人工智能,数据挖掘,统计学,最优化理论等领域有深厚的积累; 3、编程基本功扎实,熟悉常用的数据结构和算法,擅长Jave/C++/Python中至少一门语言; 4、踏实勤奋,自我驱动,善于沟通,勤于思考,有持续学习新知识的能力,有较强的逻辑思维能力,抽象、概括和总结能力,对于技术有热情; 5、有推荐、搜索、广告、NLP等相关背景者优先;有内容,新闻,短视频等行业的大规模推荐系统研发经验者优先; 6、有大规模深度学习应用或研究背景者优先; 7、熟悉机器学习和数据挖掘领域的前沿技术,在国际顶级会议(Recsys、KDD、NIPS、ICML、ACL)以第一作者发表过高水平论文者优先;有机器学习、数据挖掘等相关项目实际经验者,或者知名数据挖掘比赛(例如KDD Cup等)中取得领先名次者优先;
工作职责
1、负责推荐技术的落地;实现个性化推荐,分发策略,用户理解,内容理解等方向的技术突破; 2、沉淀社区推荐技术,并探索业务的边界。能够从复杂的业务环境中抽象出清晰具体的技术问题,并将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户体验,Inspire Life; 3、与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区信息流推荐产品;
包括英文材料
学历+
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
推荐系统+
[英文] Recommender Systems
https://www.d2l.ai/chapter_recommender-systems/index.html
Recommender systems are widely employed in industry and are ubiquitous in our daily lives.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
ICML+
https://icml.cc/
相关职位
社招3-5年策略算法
1、负责推荐技术的落地;实现个性化推荐,分发策略,用户理解,内容理解等方向的技术突破; 2、沉淀社区推荐技术,并探索业务的边界。能够从复杂的业务环境中抽象出清晰具体的技术问题,并将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户体验,Inspire Life; 3、与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区信息流推荐产品;
更新于 2025-09-05
校招策略算法
1、负责小红书App社区(主站)的推荐、搜索、交易、增长、直播等业务场景的技术探索,能够从复杂的业务环境中抽象出清晰具体的技术问题,并将大模型、机器学习等技术有效应用于小红书App社区建设上,与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区产品,提升亿级用户体验,Inspire Life; 2、构建小红书App社区(主站)的内容、用户之间的生产、关系、分发、消费机制,利用Query理解、多模态内容理解、相关性/召回/排序算法、深度学习、因果推断、迁移学习、跨域表征、多任务学习、图网络、运筹学、博弈机制等技术,持续建设图文&视频内容的大规模推荐/搜索/交易/知识生产等系统,通过策略和模型优化不断提升实现SOTA效果。
社招2年以上内容理解
1. 深入理解业务场景,负责小红书推荐场景的模型迭代&优化工作。 2.大规模推荐系统的研发和优化,为亿级用户提供稳定可靠的实时推荐服务。 3.分海量用户行为数据建模,更精准的刻画用户兴趣,提升小红书推荐的用户体验。 4.对模型迭代流程的全面优化,提升模型的迭代效率。