长鑫存储工业工程师 | Industrial Engineer(J10911)
1. 管理公司ATE测试时间模型的维护与更新,确保其准确性和实用性; 2. 协同集团产能部门交付ATE测试时间预测及优化计划; 3. 协调测试工程部试验所需机台与物料等资源; 4. 调研产能部门各产品产能规划,统筹内部各部门制定测试时间优化方案,监督执行进度,确保按时达成
Team Introduction: The team primarily focuses on recommendation services for the International E-commerce Mall, covering information flow recommendation in core scenarios such as the mall homepage, transaction funnels, product detail pages, stores & showcases. Committed to providing hundreds of millions of users daily with precise and personalized recommendations for products, live streams, and short videos, the team dedicates itself to solving challenging problems in modern recommendation systems. Through algorithmic innovations, we continuously enhance user experience and efficiency, creating greater user and social value. Project Background/Objectives: This project aims to explore new paradigms for large models in the recommendation field, breaking through the long-standing structures of recommendation models and Infra solutions, achieving significantly better performance than current baseline models, and applying them across multiple business scenarios such as Douyin short videos/LIVE/E-commerce/Toutiao. Developing large models for recommendation is particularly challenging due to the high demands on engineering efficiency and the personalized nature of user recommendation experiences. The project will conduct in-depth research across the following directions to explore and establish large model solutions for recommendation scenarios: Project Challenges/Necessity: The emergence of LLMs in the natural language field has outperformed SOTA models in numerous vertical tasks. In contrast, industrial-grade recommendation systems have seen limited major innovations in recent years. This project seeks to revolutionize the long-standing paradigms of recommendation model architectures and Infra in the recommendation field, delivering models with significantly improved performance and applying them to scenarios like Douyin short video and LIVE. Key challenges include: High engineering efficiency requirements for recommendation systems; Personalized nature of user recommendation experiences; Effective content representation for media formats like short videos and live streams. The project will address these through deep research in model parameter scaling, content/user representation learning, multimodal content understanding, ultra-long sequence modeling, and generative recommendation models, driving systematic upgrades to recommendation models. Project Content: 1. Representation Learning Based on Content Understanding and User Behavior 2. Scaling of Recommendation Model Parameters and computing 3. Ultra-Long Sequence Modeling 4. Generative Recommendation Models Involved Research Directions: Recommendation Algorithms, Large Recommendation Models. 团队介绍: 推荐与营销团队,主要负责国际电商商城推荐业务,涵盖商城首页、交易链路、商品详情页、店铺&橱窗等多个核心场景的信息流推荐业务,致力于每天为亿量级用户提供精准个性化商品、直播、短视频推荐服务;团队致力于解决现代推荐系统中各种有挑战的问题,通过算法不断提升用户体验和效率、创造更大的用户和社会价值。 课题背景/目标: 本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案。 课题挑战/必要性: 自然语言领域LLM的出现,效果在众多垂直任务上都好于sota模型,从推荐领域看过去工业级推荐系统在较长的时间没有大幅的变化过。本项目旨在探索推荐领域下的大模型方案,改变现在持续了较长时间的推荐模型结构和Infra的基本范式,且效果大幅好于现在的模型,在抖音短视频/直播等多个业务场景上得到应用。但是怎么做好推荐领域的大模型也是一个比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,以及如何短视频、直播等体裁上做号内容的表征也是需要被解决的问题,这里会从模型参数scaling up、内容和用户的表征学习、内容理解多模态、超长序列建模、生成式推荐模型等多个方向来做深入的研究,对推荐场景的模型做系统性的升级。 课题内容: 1、基于内容理解和用户行为的表征学习; 2、推荐模型参数和算力scaling up; 3、超长序列建模; 4、生成式推荐模型。 涉及研究方向:推荐算法、推荐大模型。
1. 维护产能模型:负责维护和更新公司的产能模型,确保其准确性和实用性 2. 产能分析与瓶颈解决:进行产能分析,识别产能瓶颈,并与相关团队合作解决这些问题 3. 跨厂资源调度管理:管理跨工厂的资源调度,优化资源配置 4. 管理产能和Capex计划:管理产能计划和资本支出(Capex)计划,支持不同产能假设的分析 5. 项目沟通与进度跟进:与项目关键成员沟通项目进度,跟进产能项目进度,确保按时交付 6. 产能扩充计划与执行:制定产能扩充的时间表,分配工作并协调各单位执行,监督进程和跟催进度,确保产能扩充按计划完成 7. 系统化管理机台交期:系统化管理机台交期、安装、调试进度,快速实现产能扩充目标,满足市场需求 8. 提升机台生产率:建立机制推动机台生产率提升活动,通过OEE(Overall Equipment Effectiveness)分析及改善手法,有效改善生产率,提升整体产能利用率
1、制定FAB&CP段短中期生产计划(含自制与代工品),追踪FA&CP生产计划进度,分析差距并制定追赶计划; 2、整合产出所需相关资源,以达成出货需求与产出目标 生产计划制订 ; 3、结合集团需求、FAB&CP产能、效益等因素,制定FAB&CP段短中期生产计划(含自制与代工品) ; 4、支持各Site新品导入和量产准备计划(含自制与代工品); 5、计划出货管理 ,FAB&CP生产计划进度控制及追踪,分析差距并制动追赶计划 ,FAB&CP生产拉通与日常运营对接; 6、跨厂区业务打通 ,跨工厂代工业务流程打通 ,跨厂区资源调度,实现资源共享,产出最大化。