
文远知行L4感知算法工程师--机器学习/视觉和算法
任职要求
- 同时具有很强的算法和C++编程能力;或者在机器学习/深度学习,计算机视觉,模型优化等至少一个方向上有扎实的基础和丰富的经验。 - 拥有强大的逻辑思维能力,算法能力,以及解决问题的能力。 - 具有良好的沟通能力和跨组…
工作职责
关于感知方向 感知是无人驾驶中非常复杂和有趣的部分之一,你构建的是一个人工智能集大成的系统,不是一项按部就班就能完成的工作!感知软件工程师负责无人驾驶感知系统的设计和实现,应对无人驾驶中各种最有挑战的问题: 1. 设计高效可靠的深度学习模型,在几十毫秒内精确检测和跟踪车周围200米之内所有的障碍物(人,车,非机动车辆,交通锥等),并对场景进行理解 2. 如何设计一般性的模型和算法去处理各式各样的长尾情况和极端环境,如路面上的垃圾袋,洒水车的水花,前车掉下来的挡板 ,如大雨,大雪,雾霾,风沙等 3. 如何保证感知模型和算法在极端的环境里的准确性和可靠性,如大雨,大雪,雾霾,风沙等 4. 把模型优化到极致,让十几个到几十个模型在车上有限的计算资源上欢快的运行 5. 如何搭建一个高效可靠的计算框架,支撑一个周期内接收几十个传感器的输入,做各种同步融合,并进行几十个深度学习模型的推理 关于机器学习和算法方向 这个方向的感知工程师负责设计并实现传感器标定,障碍物检测,分类,跟踪,和场景理解等各种模型和算法,对模型和算法进行评估和测试,并把模型和算法部署到车上。

感知算法工程师 -- 机器学习/视觉算法 关于公司 文远知行(WeRide)成立于 2017 年,是全球领先的 L4 级自动驾驶科技公司,致力于“以无人驾驶改变人类出行”,已在全球超过 25 个城市开展自动驾驶研发、测试及运营,累积自动驾驶里程超1600万公里,应用场景覆盖智慧出行、智慧货运和智慧环卫,形成自动驾驶出租车、自动驾驶小巴、自动驾驶货运车、自动驾驶环卫车、高阶智能驾驶等五大产品矩阵,提供网约车、随需公交、同城货运、智能环卫、高阶智能驾驶解决方案等多种服务。 凭借“1个平台+3大场景+5大产品”的多元商业化战略,文远知行商业营收居同类自动驾驶企业之首,已与多家全球顶级主机厂和一级供应商达成战略合作伙伴关系,包括雷诺日产三菱联盟、宇通集团、博世、广汽集团等,不断为人类出行提供更多新选择。 文远知行目前的团队既有来自谷歌、微软、亚马逊、苹果、百度、滴滴的高阶工程师,也不乏刚从顶尖高校毕业的青年才俊。来到我们当中,你会发现这是一个专业、专注、有趣、有料的队伍。大家为了一个激动人心而富有挑战的目标走到一起,互相激励、脑力碰撞,为实现产品落地、创造社会价值、推进行业技术而努力。 对有抱负的工程师,还有什么比这更有意义的呢?我们虚位以待,真诚期待技术过硬、志趣相投的小伙伴加入我们! 更多信息请访问:http://www.weride.ai,或关注官方微信号:文远知行WeRide 关于感知方向 感知是无人驾驶中非常复杂和有趣的部分之一,你构建的是一个人工智能集大成的系统,不是一项按部就班就能完成的工作!感知软件工程师负责无人驾驶感知系统的设计和实现,应对无人驾驶中各种最有挑战的问题: 1. 设计高效可靠的深度学习模型,在几十毫秒内精确检测和跟踪车周围200米之内所有的障碍物(人,车,非机动车辆,交通锥等),并对场景进行理解 2. 如何设计一般性的模型和算法去处理各式各样的长尾情况和极端环境,如路面上的垃圾袋,洒水车的水花,前车掉下来的挡板 ,如大雨,大雪,雾霾,风沙等 3. 如何保证感知模型和算法在极端的环境里的准确性和可靠性,如大雨,大雪,雾霾,风沙等 4. 把模型优化到极致,让十几个到几十个模型在车上有限的计算资源上欢快的运行 5. 如何搭建一个高效可靠的计算框架,支撑一个周期内接收几十个传感器的输入,做各种同步融合,并进行几十个深度学习模型的推理 关于机器学习和算法方向 这个方向的感知工程师负责设计并实现传感器标定,障碍物检测,分类,跟踪,和场景理解等各种模型和算法,对模型和算法进行评估和测试,并把模型和算法部署到车上。
多模态传感器融合感知端到端模型研发: -基于摄像头、激光雷达、3D/4D毫米波雷达等多模态传感器设计与开发融合感知模型与算法(包含但不限于:障碍物检测、OCC(Occupancy Network)、场景语义分割、跟踪等任务),提升在复杂场景、极端场景下的感知能力; -构建覆盖Corner Case的自动化数据采集与标注系统,开发数据质量评估体系,建立数据-模型迭代闭环机制; -通过自监督、弱监督学习提升模型泛化能力,加速数据飞轮,探索VLM、VLA等技术在数据飞轮中的实践与应用; -轻图/无图模型研发; -基于多模态传感器设计与实现轻图、无图模型,实现L4下的轻图实时生成,包含拓补信息、各种道路属性等的实时生成,为L4大规模应用提供基础道路感知能力; -构建轻图对应的数据闭环与数据飞轮,如挖掘算法、难例模拟生成方式、轻图适用的仿真系统等设计与实现。 世界模型研发: -设计基于多模态传感器的世界模型,为复杂问题解决效果验证、端到端模型验证提供强有力的仿真验证能力与感知能力; -构建为实现世界模型需要的数据闭环与数据飞轮,如数据采集、生成、自动化标注等相关强算法问题解决。
多模态传感器融合感知端到端模型研发: -基于摄像头、激光雷达、3D/4D毫米波雷达等多模态传感器设计与开发融合感知模型与算法(包含但不限于:障碍物检测、OCC(Occupancy Network)、场景语义分割、跟踪等任务),提升在复杂场景、极端场景下的感知能力; -构建覆盖Corner Case的自动化数据采集与标注系统,开发数据质量评估体系,建立数据-模型迭代闭环机制; -通过自监督、弱监督学习提升模型泛化能力,加速数据飞轮,探索VLM、VLA等技术在数据飞轮中的实践与应用; -轻图/无图模型研发; -基于多模态传感器设计与实现轻图、无图模型,实现L4下的轻图实时生成,包含拓补信息、各种道路属性等的实时生成,为L4大规模应用提供基础道路感知能力; -构建轻图对应的数据闭环与数据飞轮,如挖掘算法、难例模拟生成方式、轻图适用的仿真系统等设计与实现。 世界模型研发: -设计基于多模态传感器的世界模型,为复杂问题解决效果验证、端到端模型验证提供强有力的仿真验证能力与感知能力; -构建为实现世界模型需要的数据闭环与数据飞轮,如数据采集、生成、自动化标注等相关强算法问题解决。

公司介绍: 文远知行(WeRide)成立于 2017 年,是全球领先的 L4 级自动驾驶科技公司,致力于“以无人驾驶改变人类出行”,已在全球超过 25 个城市开展自动驾驶研发、测试及运营,累积自动驾驶里程超1600万公里,应用场景覆盖智慧出行、智慧货运和智慧环卫,形成自动驾驶出租车、自动驾驶小巴、自动驾驶货运车、自动驾驶环卫车、高阶智能驾驶等五大产品矩阵,提供网约车、随需公交、同城货运、智能环卫、高阶智能驾驶解决方案等多种服务。 凭借“1个平台+3大场景+5大产品”的多元商业化战略,文远知行商业营收居同类自动驾驶企业之首,已与多家全球顶级主机厂和一级供应商达成战略合作伙伴关系,包括雷诺日产三菱联盟、宇通集团、博世、广汽集团等,不断为人类出行提供更多新选择。 文远知行目前的团队既有来自谷歌、微软、亚马逊、苹果、百度、滴滴的高阶工程师,也不乏刚从顶尖高校毕业的青年才俊。来到我们当中,你会发现这是一个专业、专注、有趣、有料的队伍。大家为了一个激动人心而富有挑战的目标走到一起,互相激励、脑力碰撞,为实现产品落地、创造社会价值、推进行业技术而努力。 对有抱负的工程师,还有什么比这更有意义的呢?我们虚位以待,真诚期待技术过硬、志趣相投的小伙伴加入我们! 更多信息请访问:http://www.weride.ai,或关注官方微信号:文远知行WeRide 高精地图和定位团队介绍 如果将无人车和人脑类比,高精地图和定位系统大致对应于后者中掌管空间记忆、感知和定位的部分。它的使命是为无人车提供翔实准确的道路3D几何和语义信息,让无人车对行驶环境了如指掌,从而在其中行动自如,我们同时还负责提供高速、精准的3D定位,让车辆每时每刻都知晓当前的精确位置。高精地图和定位在无人车技术栈中占据着非常重要的位置,感知、规划、控制、仿真等各大模块都要依赖它提供的道路环境以及车辆位置的信息对周围世界进行理解,做出正确的决策。文远知行的高精地图和定位团队和公司一起成长,完全自主构建了大规模高精地图,覆盖中美多个城市超过3000公里道路,提供精确达厘米级的3D结构数据以及车道线、交通信号等大量语义信息。自行研发的定位技术,基于激光雷达、相机、卫星及惯性导航等多传感器融合,能提供实时的厘米级定位,成功实现了在暴雨中自动驾驶穿越1.5公里长隧道。 在人工智能的应用中,高精地图和定位是比较独特的。我们知道,计算机视觉作为人工智能的重要分支,其核心问题分为语义理解和几何理解两大类,前者以解析图像中物体或场景的语义信息为目的,后者的目标则是重构3D场景以及对物体进行3D定位。在高精地图和定位系统中,恰恰这两大类技术都有着非常关键的应用。除此之外,我们还是高精度卫星、惯性导航等硬件的重度用户,多模态信号处理和融合更是我们的核心技术之一。因此,这是一个多学科高度综合的应用,无论你精通深度学习等机器学习技术,还是专攻3D重建、SLAM,又或是信号处理、多传感器融合高手,这里都有你一展身手的广阔空间。同时,我们致力搭建大规模、高可用的高精度地图系统,大数据和全栈开发的编程精英同样能找到用武之地。 定位算法工程师 北京或广州或深圳 与地图及定位系统相关的,基于相机、lidar、GNSS、轮速计、IMU等多种传感器的各种智能算法的研发。工作涉及但不限于:多传感器融合建图和定位算法开发、传感器校准、点云数据处理、地图元素自动识别和智能标注等。