
文远知行感知算法工程师-- 机器学习/视觉算法
任职要求
- 同时具有很强的算法和C++编程能力;或者在机器学习/深度学习,计算机视觉,模型优化等至少一个方向上有扎实的基础和丰富的经验。 - 拥有强大的逻辑思维能力,算法能力,以及解决问题的能力。 - 具有良好的沟通能力和跨组合作能力。 - 具有强烈的自我驱动能力对无人驾驶真正的 believe 。 加分项: - 丰富的C++开发经验,熟悉多线程,内存管理,泛型,及设计模式. - 丰富多传感器融合以及2d/3d跟踪的经验 - 在顶会发表了文章
工作职责
感知算法工程师 -- 机器学习/视觉算法 关于公司 文远知行(WeRide)成立于 2017 年,是全球领先的 L4 级自动驾驶科技公司,致力于“以无人驾驶改变人类出行”,已在全球超过 25 个城市开展自动驾驶研发、测试及运营,累积自动驾驶里程超1600万公里,应用场景覆盖智慧出行、智慧货运和智慧环卫,形成自动驾驶出租车、自动驾驶小巴、自动驾驶货运车、自动驾驶环卫车、高阶智能驾驶等五大产品矩阵,提供网约车、随需公交、同城货运、智能环卫、高阶智能驾驶解决方案等多种服务。 凭借“1个平台+3大场景+5大产品”的多元商业化战略,文远知行商业营收居同类自动驾驶企业之首,已与多家全球顶级主机厂和一级供应商达成战略合作伙伴关系,包括雷诺日产三菱联盟、宇通集团、博世、广汽集团等,不断为人类出行提供更多新选择。 文远知行目前的团队既有来自谷歌、微软、亚马逊、苹果、百度、滴滴的高阶工程师,也不乏刚从顶尖高校毕业的青年才俊。来到我们当中,你会发现这是一个专业、专注、有趣、有料的队伍。大家为了一个激动人心而富有挑战的目标走到一起,互相激励、脑力碰撞,为实现产品落地、创造社会价值、推进行业技术而努力。 对有抱负的工程师,还有什么比这更有意义的呢?我们虚位以待,真诚期待技术过硬、志趣相投的小伙伴加入我们! 更多信息请访问:http://www.weride.ai,或关注官方微信号:文远知行WeRide 关于感知方向 感知是无人驾驶中非常复杂和有趣的部分之一,你构建的是一个人工智能集大成的系统,不是一项按部就班就能完成的工作!感知软件工程师负责无人驾驶感知系统的设计和实现,应对无人驾驶中各种最有挑战的问题: 1. 设计高效可靠的深度学习模型,在几十毫秒内精确检测和跟踪车周围200米之内所有的障碍物(人,车,非机动车辆,交通锥等),并对场景进行理解 2. 如何设计一般性的模型和算法去处理各式各样的长尾情况和极端环境,如路面上的垃圾袋,洒水车的水花,前车掉下来的挡板 ,如大雨,大雪,雾霾,风沙等 3. 如何保证感知模型和算法在极端的环境里的准确性和可靠性,如大雨,大雪,雾霾,风沙等 4. 把模型优化到极致,让十几个到几十个模型在车上有限的计算资源上欢快的运行 5. 如何搭建一个高效可靠的计算框架,支撑一个周期内接收几十个传感器的输入,做各种同步融合,并进行几十个深度学习模型的推理 关于机器学习和算法方向 这个方向的感知工程师负责设计并实现传感器标定,障碍物检测,分类,跟踪,和场景理解等各种模型和算法,对模型和算法进行评估和测试,并把模型和算法部署到车上。

base地 北京/上海/广州/深圳 关于感知方向 感知是无人驾驶中非常复杂和有趣的部分之一,你构建的是一个人工智能集大成的系统,不是一项按部就班就能完成的工作!感知软件工程师负责无人驾驶感知系统的设计和实现,应对无人驾驶中各种最有挑战的问题: 设计高效可靠的深度学习模型,在几十毫秒内精确检测和跟踪车周围200米之内所有的障碍物(人,车,非机动车辆,交通锥等),并对场景进行理解 如何设计一般性的模型和算法去处理各式各样的长尾情况和极端环境,如路面上的垃圾袋,洒水车的水花,前车掉下来的挡板 ,如大雨,大雪,雾霾,风沙等 如何保证感知模型和算法在极端的环境里的准确性和可靠性,如大雨,大雪,雾霾,风沙等 把模型优化到极致,让十几个到几十个模型在车上有限的计算资源上欢快的运行。 如何搭建一个高效可靠的计算框架,支撑一个周期内接收几十个传感器的输入,做各种同步融合,并进行几十个深度学习模型的推理 关于机器学习和算法方向 这个方向的感知工程师负责设计并实现传感器标定,障碍物检测,分类,跟踪,和场景理解等各种模型和算法,VLM视觉语言模型落地,对模型和算法进行评估和测试, 并把模型和算法部署到车上。

关于感知方向 感知是无人驾驶中非常复杂和有趣的部分之一,你构建的是一个人工智能集大成的系统,不是一项按部就班就能完成的工作!感知软件工程师负责无人驾驶感知系统的设计和实现,应对无人驾驶中各种最有挑战的问题: 1. 设计高效可靠的深度学习模型,在几十毫秒内精确检测和跟踪车周围200米之内所有的障碍物(人,车,非机动车辆,交通锥等),并对场景进行理解 2. 如何设计一般性的模型和算法去处理各式各样的长尾情况和极端环境,如路面上的垃圾袋,洒水车的水花,前车掉下来的挡板 ,如大雨,大雪,雾霾,风沙等 3. 如何保证感知模型和算法在极端的环境里的准确性和可靠性,如大雨,大雪,雾霾,风沙等 4. 把模型优化到极致,让十几个到几十个模型在车上有限的计算资源上欢快的运行 5. 如何搭建一个高效可靠的计算框架,支撑一个周期内接收几十个传感器的输入,做各种同步融合,并进行几十个深度学习模型的推理 关于机器学习和算法方向 这个方向的感知工程师负责设计并实现传感器标定,障碍物检测,分类,跟踪,和场景理解等各种模型和算法,对模型和算法进行评估和测试,并把模型和算法部署到车上。
1.对业界前沿计算机视觉算法进行研究与探索,利用视觉机器学习算法助力理想汽车座舱深度智能化。 2.参与多模态大模型的技术研发,包括模型复现调优、算法创新、落地应用及评测 3.支持并优化当前智能座舱相关业务的视觉能力,完成视觉算法在车载硬件平台上的落地, 并持续优化算法的实时性、鲁棒性、可靠性