网易云商-AIGC算法工程师
任职要求
1、正直诚信,有责任感,有激情,对技术落地创造影响力感到兴奋 2、模式识别/人工智能/数学/计算机相关专业,硕士及以上学历 3、熟悉AIGC基础技术如自注意力机制、位置编码、编码器-解码器架构 4、熟悉常见AIGC任务并有项目落地经验,如命名实体识别、文本分类、阅读理解、文本检索、文档结构分析、TTS、ASR等 5、在人工智能领域有一定的积累,能够从复杂的业务场景中进行算法选型、算法优化以及不断提升效果,并且能够真正应用在商业环境,从技术角度造风,创造新的商业机会,成为商业智能的驱动者 6、具有较强编程能力(Python和Java),熟练使用Linux环境进行研发,有实际大型复杂系统构建的经历 7、有基本的工程能力,能使用和魔改AI Agent框架,能搭建和维护web服务。 8、在各类ToB场景,如智能客服,CRM,ERP,企业大脑,智慧营销等领域有实际的开发和从业经验者优先 9、团队协作意识,具备和工程,测试,产品团队同学对话的能力。
工作职责
1、负责大语言模型微调, prompt优化,支持大语言模型相关项目 2、负责大语言模型在智能交互机器人,智能外呼,智能质检,AI Agent等业务场景上的应用研究 3、负责大语言模型的ToB场景下商业赋能,包括推理优化,私有化交付,同时结合传统小模型,协作形成技术到服务的最佳实践 4、负责大语言模型相关核心技术研发、前沿算法、开源模型与框架跟踪,根据产品需求完成技术转化,推动业务发展
我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 1、负责研发空间智能核心技术,进行室内/室外/航拍/卫片等全场景高质量空间理解、重建与生成,包括但不限于基于图像、视频、点云、Mesh和3DGS等多种模态数据的空间智能基座与应用; 2、负责多模态大模型和视频生成大模型的预训练、微调等工作,包括但不限于数字人、生成式重建及空间生成等应用方向; 3、负责大规模多模态数据集的构建、清洗与管理,搭建高效数据流水线,保障算法训练与评估; 4、负责结合具体需求,抽象出关键算法进行研发,并持续保持及引领相关技术指标。
团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:电商领域短视频内容正逐渐成为业务增长和用户体验优化的重要方向,通过多模态的视频理解与生成大模型创新解决电商场景中的核心挑战,例如短视频与电商商品的精准匹配、AIGC(AI生成内容)视频生成等,让用户在浏览短视频时获得更精准的商品匹配,并为内容创作者提供更便捷强大的创作工具。 研究方向:本课题聚焦于多模态视频理解与生成。构建高效的多模态嵌入模型,实现视频、图像、文本、商品等模态间的统一表示学习,以增强短视频与电商商品的关联性。通过大规模跨模态数据集的构建与优化,提升视频与商品的匹配精准度,使模型能够自动识别短视频中的商品或品牌,并精准映射至电商库,支持用户在观看时直接获取相关购买信息。此外,还将探索 AIGC(AI生成内容)短视频技术,包括商品图像+文本生成带货视频、智能剪辑与特效添加、虚拟试穿等,降低电商内容制作成本,提升营销效率。 1、负责对电商场景下的商品内容、视频内容进行理解和可控生成,赋能电商全链路场景,提供优质商品供给、内容供给、商达供给等,建立商品履约视角的商品理解算法体系,为商品履约保驾护航,提升购物体验; 2、基于前沿的AIGC模型能力,帮助降低商家素材制作成本,提升平台优质供给(短视频、图文等),利用NLP、CV、多模态技术,增强对短视频内容、图文、商品理解能力,支持搜索、推荐、商城全导购链路,提升消费者在内容场和货架场购物体验; 3、挖掘电商垂直领域大规模、高质量Pretrain数据集,基于字节跳动通用大模型,研发电商行业大模型,探索电商交互式导购新场景; 4、跟踪AIGC/CV/NLP/多模态/LLM领域的最新研究和技术发展,负责算法模型迭代升级。
1. 参与AI网关的系统设计与实现, 独立完成相关模块的完整设计、开发工作,并保证功能交付的质量与稳定性。 2. 参与AI网关的用户需求实现,主动组织、推动上下游团队的协作,按时保质地交付用户功能需求。 3. 参与AI网关的高可用能力构建,主动通过单元测试、功能测试、性能测试、容灾演练等持续提升自身负责模块的稳定性能力。 4. 参与AI网关的性能调优,关注网关领域的前沿技术发展趋势,结合网关实际场景落地持续提升网关的性能,打造高性能的企业级网关产品,例如多供应商模型之间的智能路由、 HTTP 3.0弱网环境应用等。 5. 参与AI网关的AI场景探索与落地,基于用户需求独自完成AI类插件的设计与开发工作,并保证功能交付的质量与稳定性。 6. 参与AI网关的开源项目 Higress 影响力和标准的构建,积极参与开源Higress社区的生态扩展以及 AIGC 的探索。
团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:电商领域短视频内容正逐渐成为业务增长和用户体验优化的重要方向,通过多模态的视频理解与生成大模型创新解决电商场景中的核心挑战,例如短视频与电商商品的精准匹配、AIGC(AI生成内容)视频生成等,让用户在浏览短视频时获得更精准的商品匹配,并为内容创作者提供更便捷强大的创作工具。 研究方向:本课题聚焦于多模态视频理解与生成。构建高效的多模态嵌入模型,实现视频、图像、文本、商品等模态间的统一表示学习,以增强短视频与电商商品的关联性。通过大规模跨模态数据集的构建与优化,提升视频与商品的匹配精准度,使模型能够自动识别短视频中的商品或品牌,并精准映射至电商库,支持用户在观看时直接获取相关购买信息。此外,还将探索 AIGC(AI生成内容)短视频技术,包括商品图像+文本生成带货视频、智能剪辑与特效添加、虚拟试穿等,降低电商内容制作成本,提升营销效率。 1、负责对电商场景下的商品内容、视频内容进行理解和可控生成,赋能电商全链路场景,提供优质商品供给、内容供给、商达供给等,建立商品履约视角的商品理解算法体系,为商品履约保驾护航,提升购物体验; 2、基于前沿的AIGC模型能力,帮助降低商家素材制作成本,提升平台优质供给(短视频、图文等),利用NLP、CV、多模态技术,增强对短视频内容、图文、商品理解能力,支持搜索、推荐、商城全导购链路,提升消费者在内容场和货架场购物体验; 3、挖掘电商垂直领域大规模、高质量Pretrain数据集,基于字节跳动通用大模型,研发电商行业大模型,探索电商交互式导购新场景; 4、跟踪AIGC/CV/NLP/多模态/LLM领域的最新研究和技术发展,负责算法模型迭代升级。