菜鸟大模型算法工程师
实习兼职菜鸟集团2026届实习生招聘地点:杭州状态:招聘
任职要求
1、计算机、自动化、数学等相关专业的在读硕士/博士; 2、良好的科研能力,在ICCV、ECCV、CVPR、NIPS、ICLR、TPAMI等主流会议期刊上发表相关论文者优先 ; 3、有多模态大语言模型(MLLM)相关论文或开发经验者优先; 4、熟悉自动驾驶感知或端到端算法,且有实践经验者优先。
工作职责
1、自动驾驶多模态算法研究与应用:负责自动驾驶领域的多模态大模型技术研究及算法开发,包括视觉语言模型(VLM)、一段式端到端模型,以及多模态大模型在复杂场景下的技术整合。 2、多模态感知基础模型研究:开展文本(Text)、视觉(Vision)与点云(Point)融合的多模态感知基础模型研究,包括但不限于4D表征、推理(Reasoning)感知、规划等研究方向。 3、视觉-语言-动作(VLA)大模型研究:负责基于视觉-语言-动作(VLA)架构的端到端方案研究,包括数据生产方案、VLA模型架构、效率优化等方向设计与研发。 4、预训练模型研发:研究基于未来帧预测的预训练模型,结合端到端框架设计,探索其在自动驾驶感知、决策与控制闭环中的可行性及性能提升方向。
包括英文材料
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
ECCV+
https://eccv.ecva.net/
ECCV is the official event under the European Computer Vision Association and is biannual on even numbered years.
CVPR+
https://cvpr.thecvf.com/
ICLR+
https://iclr.cc/
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
相关职位
社招1年以上算法开发岗
1、参与生成式大模型能力构建;不局限于模型设计、prompt优化、预训练、模型推理加速、其他能力建设等; 2、采用最先进的并行处理和分布式学习技术,制定并执行性能优化策略,显著提升大型语言模型的训练速度和推理能力,例如跟进DeepSeek R1技术架构等,确保技术行业领先; 3、推进大模型技术在京东物流各个业务场景落地,包括不限于智能问答、智能数据分析、智能决策以及Computer Use等,助力业务流程优化,增质提效; 4、深度探索大语言模型方向,保持技术领先优势,推动京东物流在行业内树立高效、精准的大模型/多模态大模型应用标杆,并取得业务收益。
更新于 2025-06-09
社招大模型
1、探索新一代大语言模型基座架构,完成扩散模型(diffusion model)在大语言模型的重塑,突破逐个token预测的方式,实现高效的推理模式,探索全新scaling law; 2、实现大模型训练的数据清洗、合成和评估;设计和实现大模型训练的AI Infra框架。
更新于 2025-09-05