字节跳动国际化广告算法工程师-策略中台(北京)
任职要求
1、具备优秀的编码能力,扎实的数据结构和算法功底,扎实的机器学习/深度学习理论和实践经验; 2、熟悉至少一种主流深度学习编程框架(TensorFlow/PyTorch),熟悉其底层架构和实现机制; 3、优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情; 4、对技术有热情,有良好的沟通表达能力和团队精神。 加分项 1、在广告和推荐场景有过模型或者客户生态相关工作经验; 2、在相关会议(ICML & NIPS & ICLR, Recsys & KDD等)上发表过论文; 3、有过深度学习编程框架开源社区经验;
工作职责
1、参与/负责字节跳动国际化业务广告排序算法优化,提升系统变现效率及客户体验; 2、负责大规模广告系统的全链路优化(召回/粗排/精排),持续提升系统变现效率; 3、充分感知客户反馈,通过全链路优化从根本提升客户体验,包括模型泛化/素材探索与利用/自动定向等。
团队介绍:我们是支持抖音集团广告业务算法技术中台团队Ads Core,致力于研发全球领先的在线广告优化算法,营造健康、互惠的广告生态,持续提升用户和客户体验,引领并推动行业算法的变革与创新。我们承担了抖音集团产品广告变现业务的基础算法策略和机制的改进与研究,涵盖抖音、今日头条、番茄小说等场景的商业化技术的支撑。 课题介绍: 广告推荐算法是互联网商业变现的核心驱动力,我们希望借鉴生成式AI的成功思路,探索在广告推荐算法和架构上的颠覆性创新,解锁更大的算法效果提升空间。重点探索以下方向: 1)基于类Transformer结构的生成式推荐大模型技术,验证广告推荐场景的Scaling Law,探索面向大模型的特征工程以及算法建模范式; 2)算法和工程协同设计与优化,提升海量数据、超大参数背景下的训练与推理效率; 3)语言/多模态模型和推荐模型的结合; 1、负责商业化场景推荐大模型的算法优化,引入生成式AI技术,优化算法建模方法、模型结构、特征和样本等,提升广告变现效率; 2、验证推荐大模型的Scaling Law,应对大模型训练中的一切新挑战; 3、算法和工程高度融合、协同设计,极致优化推荐大模型的训练及推理效率。
社区推荐: 1、负责推荐技术的落地;实现个性化推荐,分发策略,用户理解,内容理解等方向的技术突破; 2、沉淀社区推荐技术,并探索业务的边界。能够从复杂的业务环境中抽象出清晰具体的技术问题,并将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户体验,Inspire Life; 3、与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区信息流推荐产品。 广告推荐: 1、负责广告系统核心算法研发,包括展示&搜索CTR/CVR模型、流量策略、出价策略、广告主自动化投放算法; 2、优化商家投放体验,包括冷启动、投放稳定性、新客留存等方向,不断引入更多商家预算; 3、优化广告召回、出价策略、排序模型等算法模块,增强电商广告流量匹配效率。 电商推荐: 1、参与交易个性化推荐技术的优化,通过深度学习、迁移学习、跨域表征、多任务学习等技术提升分发匹配的效率,让每个用户可以快速准确的发现好货; 2、能够从复杂的业务环境中抽象出清晰具体的技术问题,将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户的交易与浏览体验; 3、基于电商交易业务,进行模型和算法创新,与各部门(包括并不限于产品,业务中台等)的同事一起深入交流合作,打造业界领先的推荐算法。 增长推荐: 1、负责用户增长各环节的算法策略研发,通过算法策略优化提升个性化触达、外投广告、个性化内容分发、用户画像等效果; 2、负责个性化推荐业务召回、排序等算法研发,持续优化用户拉新和拉活各个环节的算法效率; 3、负责广告投放算法工作,通过个性化预估模型和运筹优化等算法,实现对用户的精准触达和出价,提升广告投放效率; 4、负责用户消息触达等相关算法工作,通过推送等触达提升用户规模。
社区推荐: 1、负责推荐技术的落地;实现个性化推荐,分发策略,用户理解,内容理解等方向的技术突破; 2、沉淀社区推荐技术,并探索业务的边界。能够从复杂的业务环境中抽象出清晰具体的技术问题,并将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户体验,Inspire Life; 3、与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区信息流推荐产品。 广告推荐: 1、负责广告系统核心算法研发,包括展示&搜索CTR/CVR模型、流量策略、出价策略、广告主自动化投放算法; 2、优化商家投放体验,包括冷启动、投放稳定性、新客留存等方向,不断引入更多商家预算; 3、优化广告召回、出价策略、排序模型等算法模块,增强电商广告流量匹配效率。 电商推荐: 1、参与交易个性化推荐技术的优化,通过深度学习、迁移学习、跨域表征、多任务学习等技术提升分发匹配的效率,让每个用户可以快速准确的发现好货; 2、能够从复杂的业务环境中抽象出清晰具体的技术问题,将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户的交易与浏览体验; 3、基于电商交易业务,进行模型和算法创新,与各部门(包括并不限于产品,业务中台等)的同事一起深入交流合作,打造业界领先的推荐算法。 增长推荐: 1、负责用户增长各环节的算法策略研发,通过算法策略优化提升个性化触达、外投广告、个性化内容分发、用户画像等效果; 2、负责个性化推荐业务召回、排序等算法研发,持续优化用户拉新和拉活各个环节的算法效率; 3、负责广告投放算法工作,通过个性化预估模型和运筹优化等算法,实现对用户的精准触达和出价,提升广告投放效率; 4、负责用户消息触达等相关算法工作,通过推送等触达提升用户规模。