字节跳动搜索-国际化短视频推荐算法工程师
任职要求
1、基础要求:较好的算法设计能力和工程实现能力,有机器学习/强化学习/NLP应用(其一)的实践经验; 2、具备良好的沟通和表达能力,对好的用户体验有自己的认识,有较好的产品意识者优先。 加分项: 1、有大规模(候选大,用户量大)推荐系统优化经验者优先; 2、有大规模NLP语言模型预训练经验优先; 3、参加过ACM等竞赛并取得好名次者优先。
工作职责
团队介绍:国际化短视频搜索团队主要负责国际化短视频的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括: 1、探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你; 4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新。 主要负责: 1、参与国际化短视频,以及国际化短电商,生活服务等重点业务的搜索推荐模型和策略改进,负责这些业务的搜索流量和用户渗透增长 & 搜索心智建设任务; 2、以推荐算法为核心技术栈,改进基于超大规模机器学习模型的推荐系统,覆盖从候选挖掘到召回,粗排,精排,多目标融合全链路技术环节; 3、探索短文本推荐和通用推荐技术的上限,重点是推荐和NLP技术的联合应用,以及多模态等前沿技术的探索。 业务介绍 1、搜索增长业务:团队负责的功能和场景,基本覆盖了绝大多数的搜索流量并且是过去TikTok搜索流量增长的最大原因。手段包含引导/激发/便捷化搜索发生之前的全流程,如主feed里视频/评论激发的推荐query场景,搜索前的输入补全和搜索后的结果相关搜索场景。 不仅为搜索带来更多流量,也使得流量本身的单位价值更高; 2、电商搜索增长业务:电商是app重要的变现手段,搜索作为其中货架心智建设的关键一环,电商搜索流量的增长和心智的建立,在其中起到重要作用; 3、搜索与端的结合:作为搜索业务,同样负责fyp排序里搜索相关的排序逻辑,改变端的生态激发用户搜索探索更多内容的意愿。并且用用户的搜索行为,为用户提供更好的feed浏览体验。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。 1、负责TikTok的推荐算法工作,包括但不限于:视频推荐、内容理解、因果推断、智能增长等,为用户提供领先的产品体验; 2、结合机器学习技术和业务场景需求,运用包括强化学习、Graph Embedding、大模型、大规模计算等在内的前沿建模技能,解决业务痛点,提升线上效果; 3、与产品及运营团队紧密合作,对用户的行为进行深入理解和分析,制定合理高效的策略逻辑,促进生态的健康发展; 4、参与算法团队的基建工作,提升资源利用率、增强效果稳定性、优化开发流程等,持续提高团队成员的工作效率。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。 1、负责TikTok的推荐算法工作,包括但不限于:视频推荐、内容理解、因果推断、智能增长等,为用户提供领先的产品体验; 2、结合机器学习技术和业务场景需求,运用包括强化学习、Graph Embedding、大模型、大规模计算等在内的前沿建模技能,解决业务痛点,提升线上效果; 3、与产品及运营团队紧密合作,对用户的行为进行深入理解和分析,制定合理高效的策略逻辑,促进生态的健康发展; 4、参与算法团队的基建工作,提升资源利用率、增强效果稳定性、优化开发流程等,持续提高团队成员的工作效率。
1、负责国际化短视频最核心的业务推荐算法工作,与来自国内外顶级名校、有丰富业界经验的同学合作,共同搭建行业顶尖的推荐系统,为用户提供一流的产品体验; 2、将最前沿的机器学习技术应用到国际化短视频的核心场景业务,包括混排/排序/多目标/召回/冷启动/探索/多样性/内容理解等等场景,不断优化用户体验,促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、Learning to rank、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进短视频生态的长期繁荣发展。