logo of bytedance

字节跳动BI大模型数据产品实习生-Data

实习兼职A243897地点:北京状态:招聘

任职要求


1、2026届本科及以上学历在读,计算机等相关专业优先;
2、具备一定的抗压能力,较强的责任心和主动学习的态度,有快速成长的意愿;
3、对大模型或者BI方向有兴趣,有一定了解者优先;
4、具备良好的沟通和组织能力,能够协助建立产品与用户之间的初步联系,协助推动团队内的简单工作沟通;
5、对数据有一定敏感度,具备基本的业务意识和场景理解能力,具备一定的学习和总结能力;
6、每周可以实习4天以上,连续实习3个月以上。

工作职责


ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。
团队介绍:字节跳动Data研发部门,负责公司产品线的推荐、广告、系统架构、大数据和开放平台等技术。

1、参与BI的产品设计相关工作,包括对内业务支持,产品规划迭代等;
2、参与大模型模块的初步设计、用户调研的部分执行工作,协助进行资源协调和项目推进的部分基础事务;
3、关注业内大模型产品的动态,独立负责分析海内外竞品及先进方向的演进迭代。
包括英文材料
学历+
大模型+
相关职位

logo of bytedance
实习A220532

团队介绍:专注大模型在数据智能方向的应用落地,横向支持公司多个数据产品的大模型解决方案。团队致力于跟进大模型前沿进展,结合领域模型的优化策略来设计端到端的算法优化和评估方案,实现数据产品的智能升级与应用效果提升。团队鼓励敏捷创新,知识共享的协作氛围,专注投入对数据智能课题的持续探索研究。 课题介绍: 背景:在Bird、Spider2.0等复杂数据分析榜单中,基于通用大模型的COT、Prompt工程方案相比BI分析师仍有较大差距(sota 75 vs 92)。近期推理大模型例如OpenAI O3、DeepSeek R1利用Test-Time Scaling Law提升模型推理能力,并指出后训练阶段中RL是提升的重要训练方式。本课题聚焦推理大模型后训练技术(SFT+RL),通过reasoning优化模糊语义理解、多步逻辑推导、复杂查询分解等关键问题,目标建立数据分析领域的推理大模型的方法体系。 课题主要关注的挑战点包括: 1、数据分析领域中高质量的reasoning数据生成,基于高质量数据的SFT冷启动训练来提升RL(GRPO、PPO)训练稳定性,包括多Epoch训练稳定、推理格式对齐等问题; 2、通过混合Reward(包括语义理解、代码执行、难度区分、子查询效率等多角度Reward)提升在模糊语义理解、多步逻辑推导、复杂查询分解的reasoning效果来提升结果准确率; 3、探索推理大模型overthinking的解决方案,面向简单到复杂问题数据分析问题,推理模型可合理的输出推理过程长度,同时保持整体准确率效果。 1、数据增强算法优化:设计面向数据推理任务的Data-Centric算法框架,优化Reasoning Data合成链路,提升训练数据的逻辑一致性、领域适配性与多样性; 2、Test-Time Compute:负责数据大模型与推理大模型的创新结合,解决思维链生成中的Over/Under-Thinking问题,探索复杂数据分析任务的Reward最优实践收益(包括语义理解、执行正确、查询效率、洞察启发性等); 3、推理大模型应用落地:跟进开源SOTA大模型的技术演进,实践Post-Training阶段的领域适配优化,在数据洞察机器人等产品中的验证应用价值,并基于评估体系实现效果的持续迭代,沉淀技术专利。

更新于 2025-03-03
logo of bytedance
实习A234706

团队介绍:专注大模型在数据智能方向的应用落地,横向支持公司多个数据产品的大模型解决方案。团队致力于跟进大模型前沿进展,结合领域模型的优化策略来设计端到端的算法优化和评估方案,实现数据产品的智能升级与应用效果提升。团队鼓励敏捷创新,知识共享的协作氛围,专注投入对数据智能课题的持续探索研究。 课题介绍: 背景:在Bird、Spider2.0等复杂数据分析榜单中,基于通用大模型的COT、Prompt 工程方案相比BI分析师仍有较大差距(sota 75 vs 92)。近期推理大模型例如OpenAI O3、DeepSeek R1利用Test-Time Scaling Law提升模型推理能力,并指出后训练阶段中RL是提升的重要训练方式。本课题聚焦推理大模型后训练技术(SFT+RL),通过reasoning优化模糊语义理解、多步逻辑推导、复杂查询分解等关键问题,目标建立数据分析领域的推理大模型的方法体系。 课题主要关注的挑战点包括: 1、数据分析领域中高质量的reasoning数据生成,基于高质量数据的SFT冷启动训练来提升RL(GRPO、PPO)训练稳定性,包括多Epoch训练稳定、推理格式对齐等问题; 2、通过混合Reward(包括语义理解、代码执行、难度区分、子查询效率等多角度Reward)提升在模糊语义理解、多步逻辑推导、复杂查询分解的reasoning效果来提升结果准确率; 3、探索推理大模型overthinking的解决方案,面向简单到复杂问题数据分析问题,推理模型可合理的输出推理过程长度,同时保持整体准确率效果。 1、数据增强算法优化:设计面向数据推理任务的Data-Centric算法框架,优化Reasoning Data合成链路,提升训练数据的逻辑一致性、领域适配性与多样性; 2、Test-Time Compute:负责数据大模型与推理大模型的创新结合,解决思维链生成中的Over/Under-Thinking问题,探索复杂数据分析任务的Reward最优实践收益(包括语义理解、执行正确、查询效率、洞察启发性等); 3、推理大模型应用落地:跟进开源SOTA大模型的技术演进,实践Post-Training阶段的领域适配优化,在数据洞察机器人等产品中的验证应用价值,并基于评估体系实现效果的持续迭代,沉淀技术专利。

更新于 2025-03-03
logo of alibaba
实习阿里国际2026

Bravo 102是由阿里国际技术全团队共同发起的全球顶尖技术人才孵化计划,打破传统人才选拔及培养框架,为有志于走向AI未来的技术新锐们,提供“你行你上+我要我来”的双向奔赴式的实习机会选择。 在这里,“我”将不被岗位定义,以能力选择业务战场,与全球顶尖团队并肩作战,沉浸式体验全球多元化业务战场与亿级流量高并发系统。 加入我们,成为AIDC首批102位Bravo Talent,一起掌舵AI,为我们的未来Bravo! 关于我们: 我们希望利用 AI 技术让每个人都能够轻松、便捷地享受全球优质的商品和服务,推动商业活动更加高效、可持续,为社会未来的发展带来更多可能性。 数据团队立足中国、服务全球,每天处理覆盖东南亚、欧洲、美洲等多时区的跨境数据洪流,在多语言、多文化、多法规的复杂场景中,打造“数据&AI技术驱动业务”的全球化数据中台,打造亿级跨境数仓平台,攻克多时区同步与数据合规难题;运用 AI 模型优化流量分配与智能诊断,推动决策AI化转型;沉淀算法能力为 AI 产品,直达业务价值;保障双十一级洪峰响应,为全球消费者营造流畅的购物体验; 欢迎加入我们一起构建强大的数据中台和智能决策支持系统! 职位描述: 1、驱动阿里国际数字商业板块业务增长,构建 AIDC 100多个国家数据运营资产体系; 2、建设本地化市场洞察和机会发现能力,帮助业务全方位了解行业动态,挖掘商业机会; 3、承担设计和建立产品/业务的指标体系,能够科学地跟踪和指导业务的发展; 4、参与构建海外 ToB/ToC 电商用增、供应链&物流、商品等行业的数据智能化应用解决方案,驱动业务获得增量价值; 5、参与构建企业级 Data Agent,融合 LLM 与业务数据打造智能决策大脑;

更新于 2025-04-25
logo of baidu
实习ACG

-负责TOB大模型业务运营和分析工作,包括数据看板搭建、经营数据分析等 -参与到各细分赛道方向的客户覆盖策略制定等 -支持各细分赛道客户日度/周度波动分析等工作 -支持泛科技行业/子赛道/团队/客户管理/商机分析等多维度看板搭建 -支持内部团队精细化运营和战略落地

更新于 2025-06-05