字节跳动隐私/密态计算研究员-安全与风控-筋斗云人才计划
任职要求
1、获得博士学位,密码学、信息安全、计算机等相关专业; 2、扎实的现代密码学、数据安全、隐私计算或AI安全基础,对安全多方计算、同态加密、差分隐私等技术领域有深入的了解与实践; 3、熟练的编程能力(C++、Go、Python等语言)与良好的工程架构意识,扎实的数据结构与算法知识; 4、了解机器学习算法、大模型原理、大数据算法与系统、云计算服务模式等相关知识,有项目开发实践经验者优先; 5、出色的问题分析和解决能力,有自主探索解决方案的能力;良好的沟通协作能力,能和团队一起探索新技术,推进技术进步; 6、在CCS、NDSS、IEEE S&P、USENIX Security等安全顶级会议或期刊上发表论文者优先。
工作职责
团队介绍:字节跳动安全与风控部门,负责公司信息安全的建设、规划和管理工作。致力于为亿万用户的数据安全保驾护航,为字节跳动的每一位用户打造健康自由交流的防护盾。作为企业信息安全的新生力量,以技术为基石,全面提升前瞻性研究和自动化能力。团队积极布局安全人才培养与招募,在北京、上海、深圳、杭州、南京、硅谷、伦敦、新加坡均设有安全研发中心,逐步和信息安全领域的知名高校、研究机构建立深度合作,与安全人才、高校、行业共同努力,建设并反哺互联网安全生态。 课题介绍: 新型可信隐私计算特点在于其融合了软件密码学以及可信硬件技术,能够在数据“可用不可见、可算不可识、可管可计量”的基础上,支持海量数据的计算分析以及大模型的训练和推理,提供透明可信的计算环境,保障用户数据的隐私安全; 但是,在工业级的实际场景中,可信隐私计算技术的应用面临着诸多难题,包括安全计算性能的提升、云原生环境的适配以及信任体系的构建。例如,1)面对十亿甚至百亿规模的海量数据,以及大模型动辄数十B的参数,安全多方计算、同态加密技术由于高昂计算与通信开销,使得其比明文计算慢上百倍甚至千倍;2)作为云原生基础技术的容器,与机密计算结合时面临着可信计算基(TCB)过大、攻击面失控、横向逃逸、可运维性差等问题;3)机密计算虽可有效保护应用的完整性,但是完整性并不等同于安全性,应用仍可能存在漏洞或泄露用户隐私。 1、在百亿至千亿量级的数据查询分析和大模型训练推理场景下,如何从时间、空间、通信等维度,结合可信硬件、专用加速器等手段,设计高性能、可实用的安全多方计算数据分析与机器学习算法、范式以及系统框架; 2、实现机密容器技术体系,从内核、操作系统、根文件系统等维度合理地减少攻击面,同时提高可信性的可证明性、可信容器的可运维性以及可靠的容器隔离性,防御恶意逃逸行为; 3、针对机密计算应用特点,实现可用高效、范化性强(多语言支持)、具备数据泄漏追踪能力的通用可信程序分析框架,提升机密计算环境可信性。
团队介绍:字节跳动安全与风控部门,负责公司信息安全的建设、规划和管理工作。致力于为亿万用户的数据安全保驾护航,为字节跳动的每一位用户打造健康自由交流的防护盾。作为企业信息安全的新生力量,以技术为基石,全面提升前瞻性研究和自动化能力。团队积极布局安全人才培养与招募,在北京、上海、深圳、杭州、南京、硅谷、伦敦、新加坡均设有安全研发中心,逐步和信息安全领域的知名高校、研究机构建立深度合作,与安全人才、高校、行业共同努力,建设并反哺互联网安全生态。 课题介绍: 新型可信隐私计算特点在于其融合了软件密码学以及可信硬件技术,能够在数据“可用不可见、可算不可识、可管可计量”的基础上,支持海量数据的计算分析以及大模型的训练和推理,提供透明可信的计算环境,保障用户数据的隐私安全; 但是,在工业级的实际场景中,可信隐私计算技术的应用面临着诸多难题,包括安全计算性能的提升、云原生环境的适配以及信任体系的构建。例如,1)面对十亿甚至百亿规模的海量数据,以及大模型动辄数十B的参数,安全多方计算、同态加密技术由于高昂计算与通信开销,使得其比明文计算慢上百倍甚至千倍;2)作为云原生基础技术的容器,与机密计算结合时面临着可信计算基(TCB)过大、攻击面失控、横向逃逸、可运维性差等问题;3)机密计算虽可有效保护应用的完整性,但是完整性并不等同于安全性,应用仍可能存在漏洞或泄露用户隐私。 1、在百亿至千亿量级的数据查询分析和大模型训练推理场景下,如何从时间、空间、通信等维度,结合可信硬件、专用加速器等手段,设计高性能、可实用的安全多方计算数据分析与机器学习算法、范式以及系统框架; 2、实现机密容器技术体系,从内核、操作系统、根文件系统等维度合理地减少攻击面,同时提高可信性的可证明性、可信容器的可运维性以及可靠的容器隔离性,防御恶意逃逸行为; 3、针对机密计算应用特点,实现可用高效、范化性强(多语言支持)、具备数据泄漏追踪能力的通用可信程序分析框架,提升机密计算环境可信性。
团队介绍:字节跳动安全与风控部门,负责公司信息安全的建设、规划和管理工作。致力于为亿万用户的数据安全保驾护航,为字节跳动的每一位用户打造健康自由交流的防护盾。作为企业信息安全的新生力量,以技术为基石,全面提升前瞻性研究和自动化能力。团队积极布局安全人才培养与招募,在北京、上海、深圳、杭州、南京、硅谷、伦敦、新加坡均设有安全研发中心,逐步和信息安全领域的知名高校、研究机构建立深度合作,与安全人才、高校、行业共同努力,建设并反哺互联网安全生态。 课题介绍: 新型可信隐私计算特点在于其融合了软件密码学以及可信硬件技术,能够在数据“可用不可见、可算不可识、可管可计量”的基础上,支持海量数据的计算分析以及大模型的训练和推理,提供透明可信的计算环境,保障用户数据的隐私安全; 但是,在工业级的实际场景中,可信隐私计算技术的应用面临着诸多难题,包括安全计算性能的提升、云原生环境的适配以及信任体系的构建。例如,1)面对十亿甚至百亿规模的海量数据,以及大模型动辄数十B的参数,安全多方计算、同态加密技术由于高昂计算与通信开销,使得其比明文计算慢上百倍甚至千倍;2)作为云原生基础技术的容器,与机密计算结合时面临着可信计算基(TCB)过大、攻击面失控、横向逃逸、可运维性差等问题;3)机密计算虽可有效保护应用的完整性,但是完整性并不等同于安全性,应用仍可能存在漏洞或泄露用户隐私。 1、在百亿至千亿量级的数据查询分析和大模型训练推理场景下,如何从时间、空间、通信等维度,结合可信硬件、专用加速器等手段,设计高性能、可实用的安全多方计算数据分析与机器学习算法、范式以及系统框架; 2、实现机密容器技术体系,从内核、操作系统、根文件系统等维度合理地减少攻击面,同时提高可信性的可证明性、可信容器的可运维性以及可靠的容器隔离性,防御恶意逃逸行为; 3、针对机密计算应用特点,实现可用高效、范化性强(多语言支持)、具备数据泄漏追踪能力的通用可信程序分析框架,提升机密计算环境可信性。
团队介绍:字节跳动安全与风控部门,负责公司信息安全的建设、规划和管理工作。致力于为亿万用户的数据安全保驾护航,为字节跳动的每一位用户打造健康自由交流的防护盾。作为企业信息安全的新生力量,以技术为基石,全面提升前瞻性研究和自动化能力。团队积极布局安全人才培养与招募,在北京、上海、深圳、杭州、南京、硅谷、伦敦、新加坡均设有安全研发中心,逐步和信息安全领域的知名高校、研究机构建立深度合作,与安全人才、高校、行业共同努力,建设并反哺互联网安全生态。 课题介绍: 新型可信隐私计算特点在于其融合了软件密码学以及可信硬件技术,能够在数据“可用不可见、可算不可识、可管可计量”的基础上,支持海量数据的计算分析以及大模型的训练和推理,提供透明可信的计算环境,保障用户数据的隐私安全; 但是,在工业级的实际场景中,可信隐私计算技术的应用面临着诸多难题,包括安全计算性能的提升、云原生环境的适配以及信任体系的构建。例如,1)面对十亿甚至百亿规模的海量数据,以及大模型动辄数十B的参数,安全多方计算、同态加密技术由于高昂计算与通信开销,使得其比明文计算慢上百倍甚至千倍;2)作为云原生基础技术的容器,与机密计算结合时面临着可信计算基(TCB)过大、攻击面失控、横向逃逸、可运维性差等问题;3)机密计算虽可有效保护应用的完整性,但是完整性并不等同于安全性,应用仍可能存在漏洞或泄露用户隐私。 1、在百亿至千亿量级的数据查询分析和大模型训练推理场景下,如何从时间、空间、通信等维度,结合可信硬件、专用加速器等手段,设计高性能、可实用的安全多方计算数据分析与机器学习算法、范式以及系统框架; 2、实现机密容器技术体系,从内核、操作系统、根文件系统等维度合理地减少攻击面,同时提高可信性的可证明性、可信容器的可运维性以及可靠的容器隔离性,防御恶意逃逸行为; 3、针对机密计算应用特点,实现可用高效、范化性强(多语言支持)、具备数据泄漏追踪能力的通用可信程序分析框架,提升机密计算环境可信性。
研究领域: 隐私计算 项目简介: 数据要素流通正在从“内循环”走向“外循环”。数据一旦流出持有者的运维域,流入其它方的平台,便难以管控。尤其是平台的运维人员可能对数据进行窥探、窃取或滥用。运维方自身可能作恶,这是与以往有着本质不同的新型安全威胁。因此,密态计算的概念被提出,用于应对这种全新的安全威胁。但是密态计算的技术机理,仍需梳理,如何简单易懂的对公众进行表达,仍需研究。工作内容: 1、对密态计算技术进行拆解,研究各个部分的定位和作用,在此基础上,对密态计算技术进行更加深入、易懂的表达。 2、对现有的技术文档、产品文档进行梳理,对表述进行优化,形成体系化、模块化的技术文档。 3、在上述工作的基础上,通过对技术原理、技术文档的梳理,对密态计算的下一步发展提供建议。