logo of antgroup

蚂蚁金服研究型实习生-密态计算理论体系构建

实习兼职研究型实习生地点:北京状态:招聘

任职要求


研究领域:
-目前正在攻读计算机科学或相关STEM领域的学士,硕士或博士学位
-熟悉可信计算、可信执行环境等信息安全技术
-具有上述研究领域的相关经验,包括行业经验或作为参与实验室研究
优先录用:
-对技术研究充满热情,具有产生新思想和创新的能力; 在自学,问题分析和解决方面表现出色
-在国际会议上或核心期刊发表一份或多份出版物或论文
-至少4个月的全职工作

工作职责


研究领域:
  隐私计算
项目简介:
  数据要素流通正在从“内循环”走向“外循环”。数据一旦流出持有者的运维域,流入其它方的平台,便难以管控。尤其是平台的运维人员可能对数据进行窥探、窃取或滥用。运维方自身可能作恶,这是与以往有着本质不同的新型安全威胁。因此,密态计算的概念被提出,用于应对这种全新的安全威胁。但是密态计算的技术机理,仍需梳理,如何简单易懂的对公众进行表达,仍需研究。工作内容:
1、对密态计算技术进行拆解,研究各个部分的定位和作用,在此基础上,对密态计算技术进行更加深入、易懂的表达。
2、对现有的技术文档、产品文档进行梳理,对表述进行优化,形成体系化、模块化的技术文档。
3、在上述工作的基础上,通过对技术原理、技术文档的梳理,对密态计算的下一步发展提供建议。
包括英文材料
学历+
相关职位

logo of antgroup
实习研究型实习生

研究领域: 人工智能 项目简介: 实时语音交互在大模型应用落地中对于提升用户对话体验,提升用户留存(豆包app加入语音对话后留存率提升明显)具有重要作用;在AI硬件领域(AI眼镜、戒指等),实时语音交互是直接的、天然的交互方式,且对语音理解的准确率、语音生成的自然度、对话准确率、交互响应速度都有较高的要求

logo of antgroup
实习研究型实习生

研究领域: 人工智能 项目简介: 在大模型的国际化应用落地过程中,要解决几个核心的问题: 1. 大模型对于小语种的支持:在蚂蚁国际化场景中,既有中英文这样的大规模使用的语言,也有东南亚,欧洲,非洲等各的确相对较小语种的实际需求,这些小语种的语料相对而言获取难度高,也导致了大模型在应用落地过程中会遇到许多困难,探索一条高效可行的道路来扩充大模型对于小语种的支持是在业务和技术上都有着突破意义的工作 2. 大模型对于体验的支持:在模型的使用过程中,探索更好的用户体验需要进行相当的投入来保持对于体验的关注和不断尝试,既包括通过推理模型来提升模型回复能力,也包括通过长思考能力来提升问题解决的思路完备性,也可以借助于大模型的代码生成等推理能力来生成交互式界面,或者通过多模态模型来进行包括视频在内的AIGC等,在应用过程中有很多细节需要结合大模型基座进行优化 3. 模型可信:在金融场景中,模型回复的准确性和安全性至关重要,结合业务场景进行探索模型的grounding,知识注入和幻觉消除等工作

logo of antgroup
实习研究型实习生

研究领域: 人工智能 项目简介: 随着人工智能技术的快速发展,多模态大模型(Multimodal Large Language Models, MLLMs)在跨模态理解与生成领域取得了突破性进展。然而,在图像分割、目标识别及定位、视觉关系理解、目标计数等基础视觉任务中,现有MLLMs与传统视觉模型仍存在显著性能差距。这种短板严重制约了多模态技术在视频分析、图像识别等高精度视觉场景中的应用落地。 本项目期望探索更有效的多模态视觉表征,及视觉与LLM融合机制,提升多模态能力上限。

logo of antgroup
实习研究型实习生

研究领域: 隐私计算 项目简介: 在蚂蚁国际的各种在线业及离线务中,由于各国之间的法律法规差异、监管合规要求以及合作机构的意愿,国际业务数据常常面临区域间、机构间隔离的挑战,形成数据孤岛。外部合作机构/商户的数据不能出境、不愿出域。合作商户对数据保护意识强,撬动难度大。 为解决这些问题,我们希望在保证数据隐私的前提下,利用隐私计算MPC(Secure Multi-Party Computation)技术,进行联合计算和分析,确保数据在计算过程中不被泄露,实现跨区域、跨机构的数据协同。 1.负责密码学前沿技术跟踪和创新预研,进行隐私计算高性能、高精度、通用化方面的的基础研究; 2.负责将隐私计算技术应用于现实问题,面向场景优化的密码算法和系统; 3.跟踪、探索隐私计算方向前沿技术,并适时进行技术分享、专利申请和学术文章发表。 4.通过行业深度洞察以及前膽性思考,探索前沿技术、预研新场景,引导行业标准制定以及打造全球领先的行业品牌心智。