logo of bytedance

字节跳动Data Agent研发工程师-开源生态

社招全职A27565地点:北京状态:招聘

任职要求


1、本科及以上学历,计算机相关专业;思维敏捷,沟通能力强,具有自我驱动能力;
2、熟悉数据分析流程、工具,以及相关的生态(例如SQL、BI、SparkClickHouseDorisStarRocks等);
3、熟练使用Python等编程语言,具备良好的编程能力;
4、熟悉LLM基本原理,理解Prompt Engineering、RAG、Single Agent/Multi Agent架构,包括Function Call、ReAct等技术优先;
5、有实际数据分析落地经验者,开源项目经验者优先。

工作职责


1、参与Data Agent for Analysis开源项目的研发与维护,内外协同推进Data Agent for Analysis能力持续升级;
2、参与设计与持续迭代用于数据分析任务的Benchmark集合以及评估方法;
3、策划与推动开源生态战略与活动,通过技术传播与开源共建、技术合作等机制,推进提升字节跳动Data Agent技术的行业影响力;
4、跟进AI Agent生态的技术发展,推进新技术的引入与落地,持续保持技术的先进性与领先性。
包括英文材料
学历+
数据分析+
SQL+
Spark+
ClickHouse+
Doris+
StarRocks+
Python+
大模型+
Prompt+
RAG+
AI agent+
React+
相关职位

logo of bytedance
社招A58437A

1、veRL框架研发与优化:主导veRL架的核心功能设计与开发,聚焦性能优化与稳定性提升,推动框架在复杂场景(如Agent、Compute Use)下的规模化应用;同时深度参与开源社区生态建设(如技术贡献、文档维护、社区活动组织); 2、veOmini LLM/DiT训练框架研发与优化:负责veOmini中LLM与DiT训练模块的开发与优化,支持Wan2.1/Qwen/DeepSeek等热点模型的高效后训练和强化学习。

更新于 2025-05-14
logo of bytedance
社招A77544A

团队介绍:Data-电商-平台治理算法团队,通过优化算法,和业务团队协作,对字节旗下的电商产品进行全方位的质量和生态的治理,既包括风险、违规和低质问题的打击,也包括健康电商生态的建设和优化,在最大程度的优化平台治理的效果的同时提升治理的工作效率,降低成本。另外一方面,平台治理算法团队致力于攻坚前沿的AI技术,以技术驱动推动业务的变革和发展,领域涉及广泛,包括但不限于NLP/CV/多模态/大模型/图算法/序列算法等。 课题介绍: 背景:电商智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在电商审核业务中,涉及审核PBR变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对电商智能审核的大模型,以提升其在电商治理中的有效性和适应性。特别的,针对电商业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-Prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足电商审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核PBR变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核PBR分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 研究方向:模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成;Few-Shot能力:探索电商多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-Prompt生成能力;攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力;Agent能力:具备调用RAG模块,使用Tools,和Auto-planning能力;提升大模型的动态推理和反思能力。 1、深入理解电商业务,探索基于大模型、多模态模型,持续提升商家/达人在准入、发品、售后等各个业务场景的风险识别效果; 2、提升商品治理审核智能化水平,迭代优化治理大模型,提升大模型对治理规则和商品信息的理解,实现高准高召的问题识别和自动处置; 3、负责强化电商场景下,大模型推理和反思能力,通过商品业务域SFT、高质量Cot、强化学习、数据合成等技术方案,提升商品治理大模型底座能力; 4、参与构建挖掘电商直播、商品、商家和带货主播等多种实体的数据,对大规模网络/海量特征序列进行建模,支撑商家、达人分类/风险团伙挖掘等业务场景解决问题,并为商家/达人治理提供支持; 5、参与构建大规模的图存储和图学习平台,完善电商社区内商家/商品/达人/视频内容的关系建设,构建电商实体通用表征能力,赋能治理业务; 6、建设售后服务MLLM基座大模型,并利用RAG/Agent/RL等技术,解决复杂场景下对体验问题的理解能力。

更新于 2025-05-27
logo of bytedance
社招A194724A

团队介绍:Data-电商-平台治理算法团队,通过优化算法,和业务团队协作,对字节旗下的电商产品进行全方位的质量和生态的治理,既包括风险、违规和低质问题的打击,也包括健康电商生态的建设和优化,在最大程度的优化平台治理的效果的同时提升治理的工作效率,降低成本。另外一方面,平台治理算法团队致力于攻坚前沿的AI技术,以技术驱动推动业务的变革和发展,领域涉及广泛,包括但不限于NLP/CV/多模态/大模型/图算法/序列算法等。 课题介绍: 背景:电商智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在电商审核业务中,涉及审核PBR变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对电商智能审核的大模型,以提升其在电商治理中的有效性和适应性。特别的,针对电商业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-Prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足电商审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核PBR变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核PBR分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 研究方向:模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成;Few-Shot能力:探索电商多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-Prompt生成能力;攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力;Agent能力:具备调用RAG模块,使用Tools,和Auto-planning能力;提升大模型的动态推理和反思能力。 1、深入理解电商业务,探索基于大模型、多模态模型,持续提升商家/达人在准入、发品、售后等各个业务场景的风险识别效果; 2、提升商品治理审核智能化水平,迭代优化治理大模型,提升大模型对治理规则和商品信息的理解,实现高准高召的问题识别和自动处置; 3、负责强化电商场景下,大模型推理和反思能力,通过商品业务域SFT、高质量Cot、强化学习、数据合成等技术方案,提升商品治理大模型底座能力; 4、参与构建挖掘电商直播、商品、商家和带货主播等多种实体的数据,对大规模网络/海量特征序列进行建模,支撑商家、达人分类/风险团伙挖掘等业务场景解决问题,并为商家/达人治理提供支持; 5、参与构建大规模的图存储和图学习平台,完善电商社区内商家/商品/达人/视频内容的关系建设,构建电商实体通用表征能力,赋能治理业务; 6、建设售后服务MLLM基座大模型,并利用RAG/Agent/RL等技术,解决复杂场景下对体验问题的理解能力。

更新于 2025-05-27
logo of bytedance
校招A202822A

团队介绍:Data-电商-平台治理算法团队,通过优化算法,和业务团队协作,对字节旗下的电商产品进行全方位的质量和生态的治理,既包括风险、违规和低质问题的打击,也包括健康电商生态的建设和优化,在最大程度的优化平台治理的效果的同时提升治理的工作效率,降低成本。另外一方面,平台治理算法团队致力于攻坚前沿的AI技术,以技术驱动推动业务的变革和发展,领域涉及广泛,包括但不限于NLP/CV/多模态/大模型/图算法/序列算法等。 课题介绍: 背景:电商智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在电商审核业务中,涉及审核PBR变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对电商智能审核的大模型,以提升其在电商治理中的有效性和适应性。特别的,针对电商业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-Prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足电商审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核PBR变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核PBR分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 研究方向:模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成;Few-Shot能力:探索电商多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-Prompt生成能力;攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力;Agent能力:具备调用RAG模块,使用Tools,和Auto-planning能力;提升大模型的动态推理和反思能力。 1、深入理解电商业务,探索基于大模型、多模态模型,持续提升商家/达人在准入、发品、售后等各个业务场景的风险识别效果; 2、提升商品治理审核智能化水平,迭代优化治理大模型,提升大模型对治理规则和商品信息的理解,实现高准高召的问题识别和自动处置; 3、负责强化电商场景下,大模型推理和反思能力,通过商品业务域SFT、高质量Cot、强化学习、数据合成等技术方案,提升商品治理大模型底座能力; 4、参与构建挖掘电商直播、商品、商家和带货主播等多种实体的数据,对大规模网络/海量特征序列进行建模,支撑商家、达人分类/风险团伙挖掘等业务场景解决问题,并为商家/达人治理提供支持; 5、参与构建大规模的图存储和图学习平台,完善电商社区内商家/商品/达人/视频内容的关系建设,构建电商实体通用表征能力,赋能治理业务; 6、建设售后服务MLLM基座大模型,并利用RAG/Agent/RL等技术,解决复杂场景下对体验问题的理解能力。

更新于 2025-05-20