高德地图算法实习生(广告业务)-信息研发团队
任职要求
1.硕士及以上学位,计算机、通信、自动化、电子、数学、统计、物理等理工科专业。 2.熟练掌握传统机器学习、深度学习和大模型相关的理论知识,有一定的搜广推或者大模型相关的实际项目经验或实习经历。 3.具备扎实的编程基础,熟悉C、C++、Python等编程语言,…
工作职责
1.负责广告链路和大模型结合的算法研发,包括但不限于LLM预训练、生成式召回,GR、生成式重排等 2.探索新一代创新技术,推进LBS广告算法领域的技术范式升级,提升信息分发的体验和效率。 3.联动工程团队探索创新引擎和大模型训推优化,确保算法研发成果的有效落地。
团队介绍:我们是支持抖音集团广告业务算法技术中台团队Ads Core,致力于研发全球领先的在线广告优化算法,营造健康、互惠的广告生态,持续提升用户和客户体验,引领并推动行业算法的变革与创新。我们承担了抖音集团产品广告变现业务的基础算法策略和机制的改进与研究,涵盖抖音、今日头条、番茄小说等场景的商业化技术的支撑。 课题介绍: 自动化投放,是在客户给定的 营销诉求约束和素材商品资产下,平台通过感知投放状态信息(state)对投放6 要素做实时决策(action),和投放系统交互获得效果反馈(reward),来最大化客户投放效果。 过去自动化已经初步完成单Action model based 决策,在素材/出价/创编/探索预算等均有落地,但仍有以下问题:1)对历史序列建模 不够;2)仅对未来短期做决策,缺乏未来长周期action planning,不是长期最优; 3)多 action 之间缺乏组合,带来互相干扰和 label 收集不准等问题。 多客户投放竞价时,平台提供一套激励兼容且更高效的拍卖机制很重要,目前混排已经升级到 Generator-Evaluator 架构,但 G 阶段生成序列时还以暴力搜索和启发式规则为主,限制了搜索空间和效果上限,效率比较低。随着生成式模型发展,生成式对长序列建模和序列 planning生成 有显著优势,因此探索 将自动化投放和拍卖机制继续升级到生成式范式, 提升效果。
团队介绍:我们是支持抖音集团广告业务算法技术中台团队Ads Core,致力于研发全球领先的在线广告优化算法,营造健康、互惠的广告生态,持续提升用户和客户体验,引领并推动行业算法的变革与创新。我们承担了抖音集团产品广告变现业务的基础算法策略和机制的改进与研究,涵盖抖音、今日头条、番茄小说等场景的商业化技术的支撑。 课题介绍: 自动化投放,是在客户给定的 营销诉求约束和素材商品资产下,平台通过感知投放状态信息(state)对投放6 要素做实时决策(action),和投放系统交互获得效果反馈(reward),来最大化客户投放效果。 过去自动化已经初步完成单Action model based 决策,在素材/出价/创编/探索预算等均有落地,但仍有以下问题:1)对历史序列建模 不够;2)仅对未来短期做决策,缺乏未来长周期action planning,不是长期最优; 3)多 action 之间缺乏组合,带来互相干扰和 label 收集不准等问题。 多客户投放竞价时,平台提供一套激励兼容且更高效的拍卖机制很重要,目前混排已经升级到 Generator-Evaluator 架构,但 G 阶段生成序列时还以暴力搜索和启发式规则为主,限制了搜索空间和效果上限,效率比较低。随着生成式模型发展,生成式对长序列建模和序列 planning生成 有显著优势,因此探索 将自动化投放和拍卖机制继续升级到生成式范式, 提升效果。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data AML是字节跳动公司的机器学习中台,为抖音/今日头条/西瓜视频等业务提供推荐/广告/CV/语音/NLP的训练和推理系统。为公司内业务部门提供强大的机器学习算力,并在这些业务的问题上研究一些具有通用性和创新性的算法。同时,也通过火山引擎将一些机器学习/推荐系统的核心能力提供给外部企业客户。此外,AML还在AI for Science,科学计算等领域做一些前沿研究。 1、为全球企业级客户提供高效的算法服务,包括但不限于传统搜推广、大模型技术与搜推结合以及大模型应用产品; 2、理解不同行业的客户场景和需求,落地相应的算法解决方案,包括但不限于电商/内容推荐、基于大模型技术的搜索方案以及知识库问答等LLM上层应用; 3、探索大模型相关方向的前沿技术,推进相关技术在业务场景的落地,包括但不限于长序列建模/多模态/RAG/智能体; 4、与产品研发团队协作建设平台产品,在多云环境下为全球范围内的客户提供算法解决方案,包括但不限于智能推荐平台和大模型搜推平台。
团队介绍:TikTok是一个覆盖150个国家和地区的国际短视频平台,我们希望通过TikTok发现真实、有趣的瞬间,让生活更美好。TikTok 在全球各地设有办公室,全球总部位于洛杉矶和新加坡,办公地点还包括纽约、伦敦、都柏林、巴黎、柏林、迪拜、雅加达、首尔和东京等多个城市。 TikTok研发团队,旨在实现TikTok业务的研发工作,搭建及维护业界领先的产品。加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,支持产品在全球赛道上高速发展;也能接触到包括服务架构、基础技术等方向上的技术挑战,保障业务持续高质量、高效率、且安全地为用户服务;同时还能为不同业务场景提供全面的技术解决方案,优化各项产品指标及用户体验。 在这里, 有大牛带队与大家一同不断探索前沿, 突破想象空间。 在这里,你的每一行代码都将服务亿万用户。在这里,团队专业且纯粹,合作氛围平等且轻松。目前在北京,上海,杭州、广州、深圳分别开放多个岗位机会。 为什么加入我们 与团队共同激发创造:创造是 TikTok的核心。不管对于TikTok产品还是团队本身,我们都希望能激发更多想象力,为自己、平台、我们所服务的社区以及社会带来更多价值和影响。 在有挑战的事中成长:在TikTok,你能够参与非常有挑战性的项目,一起做出突破行业、有全球影响力的事。这里有数以亿计的用户,在等你用新技术、新想法为他们带来新的体验。我们从不安于现状,对我们来说,每一个挑战,无论多么困难,都是一个学习、创新、和成长的机会。 工作方式和文化:我们鼓励务实解决实际问题、在每件事上追求极致,希望大家始终像“创业第一天”那样做事。 公司文化多元兼容,同事之间像同学一样平等相处,机制敏捷灵活,希望更好地激发每个人的创造力。 优秀的人能获得认可与回报:优秀人才能够和公司共同成长,什么时候加入都不晚。我们也进一步加大了激励区分度,让优秀的人得到认可和回报、承担更多重要项目,充分发挥潜能,脱颖而出。 欢迎加入我们! 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。 1、负责TikTok最核心的业务推荐算法工作,与来自国内外顶级名校、有丰富业界经验的同学合作,共同搭建行业顶尖的推荐系统,为用户提供一流的产品体验; 2、将最前沿的机器学习技术应用到国际化短视频的核心场景业务,包括混排/排序/多目标/召回/冷启动/探索/多样性/内容理解等等场景,不断优化用户体验,促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、排序学习、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进短视频生态的长期繁荣发展。