高德地图高德-LLM/多模态大模型算法工程师/专家-北京
任职要求
1. 计算机科学、人工智能、统计学或相关领域的硕士学位; 2. 精通至少一种深度学习框架,如TensorFlow、PyTorch等; 3. 在多模态数据处理、自然语言处理、计算机视觉等任一领域有深入研究; 4. 良好的团队合作精神和沟通能力。 加分项: ● 在人工智能顶级会议(CVPR/ICCV/ECCV/ICLR/NeurIPS/ICML等)或期刊上发表过相关论文。 ● 知名国际比赛获得Top3名次。
工作职责
1. 围绕业务场景,进行大模型研发和落地,不限于LLM、多模态大模型SFT、Agent; 2. 研究和实现新的算法和技术,以提高模型的性能和效率; 3. 与团队合作,将研究成果转化为实际的产品功能。
1、负责基于LLM及多模态大模型的应用落地相关工作,利用大语言模型及多模态大模型微调、prompts调优、指令构建及演化技术,将大模型的生成、理解、交互能力在公司核心场景中落地赋能,创造收益增长; 2、负责LLM及多模态大模型的应用中台及相关技术模块搭建,包括但不限于Agents 、RAG、 function call、system prompts等,探索大模型应用前沿及新兴应用场景。
围绕高德的核心业务场景,研究大模型与推荐结合提升业务效果并落地,不限于LLM、多模态大模型SFT、RLHF、多模态理解、内容表征、推荐算法、行为序列建模、搜索算法。 团队介绍: 团队由国内外知名高校及主流互联网企业的资深专家组成,在顶尖期刊(如KDD、NeurIPS、ICLR、ICML、AAAI等)发表过多篇论文,是国内理论与应用实践相结合、应用算法创新的顶尖和超一流团队。
中台稠密引擎组,是小红书负责建设通用深度学习训练推理引擎的团队,面向全公司LLM、多模态LLM、SD、传统CV&NLP等稠密计算型模型训练与推理的业务场景,打造高效、易用、业界领先的训练与推理引擎,为小红书社区、商业化、安全等众多业务方向提供先进的引擎能力,支撑业务持续提升训练推理效率、模型迭代效率与算法研发效率。 1、参与设计和实现深度学习后训练及微调的前沿算法(包括但不限于RFT、RLHF等),以适应多样化的业务场景; 2、结合业务数据和场景,评估选择最适合的微调算法,以支撑业务大语言模型(LLM)微调指标的提升; 3、与数据团队紧密合作,深入理解数据特性,参与设计实现数据提质算法引擎工具,产出高质量数据集提升模型微调效果; 4、与公司内各算法团队深度合作,参与或负责大语言模型、多模态大模型等业务场景的后训练端到端效果提升及落地; 5、密切关注业界 LLM 微调算法和数据提质领域的前沿论文,并整合新技术和算法到训练引擎中,提升框架的领先性;
团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。