logo of amap

高德地图大模型算法工程师-Agent或模型推理方向-APP平台业务

实习兼职高德地图2026届春季校园招聘地点:北京状态:招聘

任职要求


1、计算机科学、电子工程、数学或相关专业的本科及以上学历;对机器学习深度学习有扎实的理解,具备相关的项目经验或研究背景;
2、熟练掌握至少一种主流深度学习框架,如TensorFlowPyTorch等;
3、具备良好的编程能力,熟练使用Python/C++进行算法开发;
4、了解模型推理加速的相关技术,如有相关实践经验更…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


岗位职责包括但不限于:
1、参与开发和优化大规模深度学习模型,特别是在Agent系统、算法推理加速以及语音处理领域的应用;
2、研究并实现前沿的算法推理加速技术,包括但不限于模型压缩、量化、剪枝等方法,以提高模型效率和性能;
3、设计和开发智能Agent系统,通过强化学习、模仿学习等技术提升Agent在复杂环境下的决策能力;
4、专注于语音识别、语音合成等语音技术的研究与开发,提升语音业务的质量和用户体验;
5、与跨职能团队合作,将研究成果转化为产品解决方案,解决实际业务问题;
6、撰写技术文档,分享研究进展和技术心得。
包括英文材料
学历+
机器学习+
深度学习+
TensorFlow+
PyTorch+
还有更多 •••
相关职位

logo of meituan
校招核心本地商业-业

研究方向一:大模型智能体Agent技术研究​ ​1.研究多轮长对话中的上下文管理技术,提高模型的连贯性和一致性,并探索基于用户特征和历史交互的定制对话策略,设计针对特定业务场景的微调和适应技术,提升模型在实际应用中的表现。​ 2.探索智能体调用和使用多个外部工具的方法,通过端到端后训练的方式增强其解决实际问题的能力。深度研究智能体的自我评估和学习机制,实现智能体的持续优化和能力提升。​ 3.优化LLM长链路的多轮工具调用能力,提升工具调用时的精确性及用户的实际交互体验。​ 4.设计并完善针对特定任务场景的Auto-Eval能力,指导模型迭代方向。 研究方向二:深度搜索(Deep Search/Research)技术研究​ 1.研究面向深度搜索场景的工具学习方法,基于SFT/RLHF后训练算法赋予搜索智能体高效的工具调用能力。​ 2.对齐行业最前沿的研究进展,深入研究不同工具调用环境下的大模型后训练能力边界,并基于实际业务场景进行迭代优化。​ ​研究方向三:多模态基础模型能力建设​ 1.研究多模态数据(文本、语音、图像等)的语义融合与表示方法,提升模型对复杂内容的理解能力。 2.探索多模态模型在推理任务中的表现,研究如何通过工具调用增强模型的推理能力。​ 3.设计高效的多模态模型架构,优化模型的参数规模、训练效率和推理性能,提升基础模型的通用性与适应性。 ​研究方向四:大模型分布式后训练及推理加速技术​ 1.后训练方向:样本IO吞吐优化:使用多线程读取、数据管道流水线编排、数据压缩等技术,实现分布式环境下高性能的样本IO pipeline;​计算图编译与高效执行:通过图编译、Kernel优化、算子融合等手段,提升计算图的执行效率;高性能并行训练:包括DP/TP/PP/SP/CP/EP等并行策略及其他训练超参数的自动寻优,故障自动恢复,弹性计算等;强化学习训练效率优化:通过rollout速度优化、多模型多阶段流水线编排、负载均衡等手段优化RL训练效率。 2.推理加速方向:负责实现和优化大模型在线推理系统,提升推理性能,包括不限于:架构设计、算子开发、通信优化等; 研究并实现各种模型推理加速手段如并行策略、混合精度、MOE、FP8等技术,加速模型推理速度; 设计和开发高效的离线、在线推理系统,优化SGLang、vLLM等推理框架,加速整体推理性能。

更新于 2025-05-23北京
logo of amap
社招3年以上技术类-算法

职位名称: 团队介绍: 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现空间智能、高精度地图、三维重建、LLM/VLM,AI Agent等核心技术,持续突破自动驾驶、AR导航、具身智能、推广搜和生活服务等领域的技术边界。团队不仅在计算机视觉领域持续深耕,更将计算机视觉及AI技术在自主导航、高德打车、生活服务等多元化应用场景。 作为高德地图的核心技术驱动部门,我们以下一代三维地图引擎、多模态理解与生成、空间智能、世界模型等方向为核心,推动智能出行与真实世界连接的深度融合。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 1. 定义未来地图范式:不再局限于传统视觉感知,而是利用多模态大模型实现从“看到”到“理解并生成”的跨越,解决行业核心痛点 2. 直面海量数据与复杂场景:处理中国乃至全球最复杂、最丰富的驾驶场景数据,构建坚实的技术壁垒 3. 完整的研发生态:从顶级学术研究(顶会论文)、开源项目(见团队GitHub)到国民级应用落地,提供全方位的价值实现舞台 岗位职责: 1. 核心方向:研发面向车道级地图自动化构建的多模态大模型,基于道路视频与图像自动提取车道线、POI信息等地图要素,实现高效、自动化的地图数据生产; 2. 模型全链路研发:负责或参与多模态大模型的预训练、有监督微调(SFT)、奖励模型(RM)训练与强化学习(RL)优化全流程,探索模型在空间推理、结构化生成任务上的能力强化路径; 3. 技术攻坚与落地:优化模型的推理效率、泛化能力与输出稳定性,研究适配的模型压缩(量化、蒸馏)、加速技术与部署方案,推动技术在大规模数据生产管线中落地; 4. 前沿探索与创新:跟踪并吸收多模态理解、视觉生成、世界模型、3DGS等领域的前沿进展,将其创新性地应用于地图生成问题,持续提升自动化生产的质量与范围。

更新于 2025-12-03北京
logo of tongyi
社招3年以上技术类-算法

1. 具身智能大模型研究与优化 (1) 研究和构建具身智能大模型(Embodied Foundation Models)与机器人大脑。 (2) 探索语言、视觉、动作等多模态融合机制(VLM / VLA / VLA-Agent)。 (3) 优化模型的长时记忆、推理能力与可泛化性。 2. 机器人智能算法研发 (1) 设计和实现机器人多模态感知、导航、操作、交互等核心算法模块。 (2) 推进大模型驱动的机器人任务规划与决策。 (3) 基于模拟器与真实世界数据,进行大规模对齐与强化学习(Sim2Real, RLHF, Imitation Learning)。 3. 系统落地与协同研发 (1) 与硬件与系统团队协作,推动模型算法在真实机器人平台上的部署与性能调优。 (2) 支撑具身智能大模型的云端训练体系、数据闭环与MLOps工程。 (3) 发表高水平论文或申请相关专利,推动业界与学界前沿研究。

更新于 2025-12-02北京|杭州
logo of meituan
社招3年以上核心本地商业-美

1、探索模型通过 RL Scaling 等方式使用成套工具解决复杂问题的行动和规划能力,包括 Human in the Loop 多轮交互下 Agent 基础建模的新方案、以及与复杂环境的交互学习能力; 2、探索模型在 Non-Rule Based Outcome 场景下利用复杂信息进行有效 Reasoning 推理的范式,包括 Proactive Agent 的建模方案; 3、探索研究更多内在奖励的机制,从而激发模型主动学习和自我更新的能力; 4、探索构建长期记忆机制,为下一代高效的推理模型、长序列推理及建模提供基础

更新于 2025-09-18北京