高德地图高德-算法工程师/专家-动态业务部
社招全职3年以上技术类-算法地点:北京状态:招聘
任职要求
1、 熟练掌握机器学习、深度学习算法,包括但不限于(Transformer,CNN,GNN,迁移学习,多模态等)或自然语言处理任务(文本相似度/深度学习算法)等原理; 2、 熟悉大模型相关技术,了解prompt、SFT、RLHF、RAG、agent等相关知识; 3、 熟练掌握Python,有使用sklearn、TensorFlow等工具的经验。掌握海量数据处理技术,包括但不限于Hadoop/Hive/Spark; 4、 愿意在地图领域深耕,具有优秀的分析问题和解决问题的能力,对解决挑战性问题充满激情,具有良好的沟通能力,重视团队合作。
工作职责
1、 负责将深度学习、多模态大模型等技术与地图专业领域知识结合; 2、 参与最前沿的生成式建图等领域模型研发,将大模型、NLP、多模态、预训练等先进技术应用到业务中提升效果; 3、 负责大模型在地图特征提取和数据生成应用落地,包括系统性掌握Prompt工程的相关技术,与工程同学配合,完善整体链路,推进应用上线。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
GNN+
https://distill.pub/2021/gnn-intro/
Neural networks have been adapted to leverage the structure and properties of graphs.
https://gnn.seas.upenn.edu/
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
https://www.ibm.com/think/topics/graph-neural-network
Graph neural networks (GNNs) are a deep neural network architecture that is popular both in practical applications and cutting-edge machine learning research.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
SFT+
https://cameronrwolfe.substack.com/p/understanding-and-using-supervised
Understanding how SFT works from the idea to a working implementation...
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Scikit-learn+
https://www.ibm.com/think/topics/scikit-learn
Scikit-learn, or sklearn, is an open source project and one of the most used machine learning (ML) libraries today.
https://www.youtube.com/watch?v=SIEaLBXr0rk
Today we to a crash course on Scikit-Learn, the go-to library in Python when it comes to traditional machine learning algorithms (i.e., not deep learning).
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
CNN+
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
Convolutional Neural Network (CNN) forms the basis of computer vision and image processing.
[英文] CNN Explainer
https://poloclub.github.io/cnn-explainer/
Learn Convolutional Neural Network (CNN) in your browser!
https://www.deeplearningbook.org/contents/convnets.html
Convolutional networks(LeCun, 1989), also known as convolutional neuralnetworks, or CNNs, are a specialized kind of neural network for processing data.
https://www.youtube.com/watch?v=2xqkSUhmmXU
MIT Introduction to Deep Learning 6.S191: Lecture 3 Convolutional Neural Networks for Computer Vision
AI agent+
https://www.ibm.com/think/ai-agents
Your one-stop resource for gaining in-depth knowledge and hands-on applications of AI agents.
相关职位
社招A248249B
1、业务应用:负责将自研的算法模型应用于企业协同软件中,在会议、文档、消息、办公智能体等诸多办公场景中打造最好的AI工具和产品,不断改善用户体验; 2、模型优化:负责训练大语言模型不断提高其在办公领域的算法质量;建设高效的评测方法和技术体系;采集、调研并生产办公领域的高质量数据集; 3、技术建设:持续关注业界新的技术趋势和研究成果,分享行业优秀实践,将前沿技术应用于大模型中。
更新于 2024-10-22
社招A162549A
1、业务应用:负责将自研的算法模型应用于企业协同软件中,在会议、文档、消息、办公智能体等诸多办公场景中打造最好的AI工具和产品,不断改善用户体验; 2、模型优化:负责训练大语言模型不断提高其在办公领域的算法质量;建设高效的评测方法和技术体系;采集、调研并生产办公领域的高质量数据集; 3、技术建设:持续关注业界新的技术趋势和研究成果,分享行业优秀实践,将前沿技术应用于大模型中。
更新于 2024-10-22
社招3年以上D7842
1.负责AI芯片编译器的方案及开发实现(侧重点为高能效比与加速器的高利用率); 2.负责编译器及相应工具链的开发和维护; 3.结合AI算法,架构和产品需求,完成AI编译器的方案及软件开发; 4.模型的性能优化,研发性能和功耗分析及优化工作 5.结合业界编译器的发展动态,规划自研编译器的演进
更新于 2023-01-31