高德地图高德-NLP/搜推/大模型算法工程师/专家(P6/7)-POI智能化(急招)
任职要求
1、熟悉NLP的各种任务建模,并且有丰富的实践经验,包含但不仅限于切词、NER、语言模型、事件检测与要素抽取、分类等; 2、具备分布式计算方面的研发经验,能够在Tensorflow、Pytorch等主流深度学习平台上开发分布式算法; 3、有技术洞察力,精益求精,有产品意识,优秀的问题分析解决能力,对挑战充满激情; 4、有技术上的创新和突破,在业界有一定的知名度和影响力优先; 5、在ACL、EMNLP、NAACL、COLING、WWW、CIKM、ICML、KDD、NeurIPS等相关国际会议上有文献发表优先。
工作职责
我们需要NLP方向和推荐方向的算法专家,负责对地图生产资料、互联网情报、搜索日志、用户反馈等非结构化文本进行分析和信息抽取,负责理解高德用户的到达行为,融合人地大数据,构建知识图谱和智能推理能力,打通数据生产和前台业务,使得用户获得更加智能的出行和服务体验。 1、参与和负责POI产线的NLP算法部分,包括POI的NLP基础功能服务、多模态名称融合生成、名称质检模块、名称纠错模块等; 2、搭建POI的NLP基础服务平台,实现以POI为核心实体的地图数据图谱,为高德的POI搜索、推荐业务提供完备信息; 3、配合其他POI采集、挖掘、调度、聚合业务,建模NLP任务,提供准确且有效的NLP信息; 4、积极地探索和研究NLP的应用和认知领域,结合地图场景,提供更加全面且完备的服务; 5、参与和负责POI的XGC业务,包括相关性召回、各级转化率模型,提升用户的答题率,答题的转化率模型; 6、积极地挖掘高德的人地相关性,推动用户与POI问题的推荐逻辑,提升高德场景的搜推基建和技术。
所在团队负责阿里国际贸易平台上的所有推荐产品,包括猜你喜欢、详情页推荐、个性化楼层等。团队通过大数据和深度学习建模,帮助平台上买卖家快速达成生意。来到这里,你将有机会深度接触到业界的计算平台和深度学习算法,并将算法技术转化为商业价值。具体地,你将有机会负责: 1. 用户画像、召回、排序和策略等模块的技术规划和算法设计,通过技术创新提升买卖家匹配效率。 2. 通过大规模深度学习和图学习,在面对数据稀疏和多国家多行业的情况下对用户实时兴趣、CTR预估、询盘和交易转化预估等问题建模。 3. 通过多样性和发现性策略,拓展用户需求,提升兴趣发现能力,进一步完善和提升推荐侧的产品价值。 4. 探索大语言模型+搜推的创新应用方向,LLM在推荐领域下的全链路建设,包括但不限于大规模的预训练、SFT、LoRA和RLHFL等技术,落地大语言模型+搜推的新的应用落地场景(如生成式推荐等)。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1)探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2)探索跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3)探索大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4)探索千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务,方方面面都进行深入研究和创新。 1、探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索LLM适性索引、LLM相关性、生成式召回、排序大模型等; 2、构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、训练和优化AI搜索的机器学习模型(多模态内容理解、指令微调、索引筛选、Query分析、Scalable Oversight、Long CoT、模型推理/规划、模型优化、构建全面客观准确的评测体系等); 3、探索推进AI搜索、AIGC创新应用的落地(包含而不限于豆包、电商、抖音、智能硬件、AI找搭配/虚拟穿搭等大模型应用场景),研发以人工智能技术为核心的新技术、新产品,探索满足用户的智能交互需求,提升现实与物理世界的交互能力。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1)探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2)探索跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3)探索大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4)探索千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务,方方面面都进行深入研究和创新。 1、探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索LLM适性索引、LLM相关性、生成式召回、排序大模型等; 2、构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、训练和优化AI搜索的机器学习模型(多模态内容理解、指令微调、索引筛选、Query分析、Scalable Oversight、Long CoT、模型推理/规划、模型优化、构建全面客观准确的评测体系等); 3、探索推进AI搜索、AIGC创新应用的落地(包含而不限于豆包、电商、抖音、智能硬件、AI找搭配/虚拟穿搭等大模型应用场景),研发以人工智能技术为核心的新技术、新产品,探索满足用户的智能交互需求,提升现实与物理世界的交互能力。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1)探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2)探索跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3)探索大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4)探索千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务,方方面面都进行深入研究和创新。 1、探索搜索引擎与大模型、LLM、MLLM、多模态、计算机视觉、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索LLM适性索引、LLM相关性、生成式召回、排序大模型等; 2、构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、训练和优化AI搜索的机器学习模型(多模态内容理解、指令微调、索引筛选、Query分析、Scalable Oversight、Long CoT、模型推理/规划、模型优化、构建全面客观准确的评测体系等); 3、探索推进AI搜索、AIGC创新应用的落地(包含而不限于豆包、电商、抖音、智能硬件、AI找搭配/虚拟穿搭等大模型应用场景),研发以人工智能技术为核心的新技术、新产品,探索满足用户的智能交互需求,提升现实与物理世界的交互能力。