优酷优酷-AI-Infra工程师-北京
社招全职4年以上地点:北京状态:招聘
任职要求
1、擅长C++/Python/Golang,熟悉Linux环境开发,具备扎实的数据结构与算法基础 2、深入理解分布式系统原理,熟悉NCCL、MPI、RDMA等通信库或协议 3、熟悉PyTorch/DeepSpeed/Megatron/vLLM等框架源码,了解自动微分、计算图优化等底层机制 4、有GPU/CUDA编程经验,掌握显存管理、Kernel优化等关键技能 5、熟悉Kubernetes/Docker等容器化技术,有云原生AI平台开发经验者优先 6、3年以上AI系统或高性能计算开发经验,主导过大规模训练任务(千卡以上集群) 7、计算机科学、电子工程等相关专业,硕士及以上学历优先;在顶会发表论文,或有知名开源项目贡献者优先
工作职责
1、参与AI训练与推理系统的定制和优化,基于计算-存储-通信协同设计,为算法和模型迭代提供优秀的分布式训练和推理解决方案 2、构建高性能计算集群,提供跨地域异构算力的管理,解决通信、存储、调度等系统级瓶颈 3、深入AI框架底层(如PyTorch、Megatron、vLLM等),改进分布式计算、自动并行、显存优化等核心模块 4、支持AI服务的规模化部署,参与加速优化,算力调度优化和稳定性保障工作,提供通用的模型加速,问题诊断,可观测性等解决方案 5、探索前沿技术方向,如编译优化、post-train训练、agent基础框架等,参与算法模型和工程技术的联合创新实践,解决AI落地业务应用过程中,新出现的效率、规模问题
包括英文材料
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Go+
https://www.youtube.com/watch?v=8uiZC0l4Ajw
学习Golang的完整教程!从开始到结束不到一个小时,包括如何在Go中构建API的完整演示。没有多余的内容,只有你需要知道的知识。
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
分布式系统+
https://www.distributedsystemscourse.com/
The home page of a free online class in distributed systems.
https://www.youtube.com/watch?v=7VbL89mKK3M&list=PLOE1GTZ5ouRPbpTnrZ3Wqjamfwn_Q5Y9A
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
DeepSpeed+
https://www.youtube.com/watch?v=pDGI668pNg0
Megatron+
https://www.youtube.com/watch?v=hc0u4avAkuM
vLLM+
https://www.newline.co/@zaoyang/ultimate-guide-to-vllm--aad8b65d
vLLM is a framework designed to make large language models faster, more efficient, and better suited for production environments.
https://www.youtube.com/watch?v=Ju2FrqIrdx0
vLLM is a cutting-edge serving engine designed for large language models (LLMs), offering unparalleled performance and efficiency for AI-driven applications.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
Docker+
https://www.youtube.com/watch?v=GFgJkfScVNU
Master Docker in one course; learn about images and containers on Docker Hub, running multiple containers with Docker Compose, automating workflows with Docker Compose Watch, and much more. 🐳
https://www.youtube.com/watch?v=kTp5xUtcalw
Learn how to use Docker and Kubernetes in this complete hand-on course for beginners.
学历+
内核+
https://www.youtube.com/watch?v=C43VxGZ_ugU
I rummage around the Linux kernel source and try to understand what makes computers do what they do.
https://www.youtube.com/watch?v=HNIg3TXfdX8&list=PLrGN1Qi7t67V-9uXzj4VSQCffntfvn42v
Learn how to develop your very own kernel from scratch in this programming series!
https://www.youtube.com/watch?v=JDfo2Lc7iLU
Denshi goes over a simple explanation of what computer kernels are and how they work, alonside what makes the Linux kernel any special.
相关职位
社招1年以上
服务淘天电商核心营销业务,针对AI在搜索/推荐/广告、创意、风控等场景的应用开展: 1. AI推理和服务框架的研发与优化,解决实际的业务问题; 2. 算法-软件-硬件协同优化(异构并行计算、AI编译、稀疏量化、混部与弹性等),发挥数十万CPU核和数千加速卡的计算潜力; 3. 研究业界前沿的AI算法、系统和硬件,探索面向推荐系统或大模型AI在线服务的理想软件和硬件系统。
更新于 2025-08-18
社招3-5年云智能集团
弹性计算异构AI推理团队,承担着构建阿里云IAAS资源在公共云竞争力的职责。在AI领域,团队对接业界主要AI用户的业务需求,承接提升GPU、AI加速器等芯片在AI场景的竞争力职责。和团队一起通过专家领域知识和软硬件分析能力构建阿里云在AI场景的核心竞争力和加速解决方案。 1. 负责基于云上AI真实场景的解决方案和性能分析系统建设,构建性能标尺。 2. 负责基于云上大规模推理场景的构建和底层软件性能优化工作。 3. 负责包括CIPU、GPU、AI加速器等硬件在阿里云AI场景的竞争力构建。 4. 与厂商和内部业务团队合作,为阿里云的AI用户提供具有竞争力的AI解决方案。
更新于 2025-07-15
社招5年以上CSIG技术
1.负责 deepseek 等AI大模型在 K8s 上的推理部署方案研发,深度对接客户场景; 2.负责AI Infra相关能力在TKE的落地,如AI 相关工作负载的设计与研发,降低用户使用成本; 3.通过优化 AI 部署的计算、网络、存储相关资源,提升训练及推理效率; 4.负责推理稳定性、亲和性调度、推理框架优化、GPU池化等相关工作,降低推理成本,提升推理效率。
更新于 2025-06-05