蚂蚁金服蚂蚁集团-Agent Infra 研发工程师-北京/杭州
任职要求
1. 一年以上大规模基础设施研发实践经验,熟悉 Python 或 Golang 研发,熟悉微服务架构、分布式计算、AI Agent 系统、沙箱技术等任一领域的专业知识; 2. 对浏览器工作原理有经验的优先,能深入理解浏览器的运作机制,如渲染引擎、JavaScript 引擎以及网络传输协议优化等; 3. 对 Linux 操作系统、图形虚拟化、手机…
工作职责
负责 AI Agent Infra 建设,提升 AI Agent 产品创新效率,探索生成式 AI 在数字世界的实际应用。 1. 建设 Agent SWE Infra 工程,提升 Agent 相关代码的个性化构建和发布效率; 2. 建设 Sandbox Infra 工程,为各类 Agentic 场景提供高效、稳定、大规模的模拟器、多工具、图形交互的沙箱环境; 3. 建设 Serving Infra 工程,为生产提供通用的 Agent 服务化框架,优化 LLM 和 Agent 性能,保障高可用运行。
通义千问(Qwen)是由通义实验室自主研发的超大规模语言模型,具备多模态、多语言、跨任务的理解与生成能力。Qwen系列模型,涵盖参数量从亿级到万亿级的基座大语言模型,并相继推出Qwen-VL、Qwen-Audio、Qwen-Omni、Qwen-Coder、Qwen-Image等系列模型。从多轮对话到代码生成,从逻辑推理到内容创作,从单一多模态到全模态统一理解生成,Qwen 正在打造全球领先的全模态模型技术体系,推动AI在企业服务、开发者生态、个人用户等领域的深度应用,引领下一代人工智能的发展。 若你对以下一个或者多个方向感兴趣均欢迎投递: 1)多模态基础模型的研发,包括融合视觉语言的跨模态理解模型设计,提升视觉基础模型在图像/视频中的视觉知识、空间感知、Omni Parsing 等核心能力,并同时优化多模态大模型的AI infra。 2)通过强化学习(RL)持续提升多模态模型推理能力和执行任务能力,构建支持网络世界(PC/Mobile/Web/游戏)交互的通用智能体,将相关能力拓展到GUI agent,VLA,以及具身智能场景中。 3)研究理解与生成统一的模型架构,实现跨模态生成与推理的协同优化。 工作职责: 1. 多模态 pre-training:开展研究及进行实验,研究内容包括:数据清洗筛选、数据配比优化、课程学习、视觉语言模型结构设计与优化、训练策略优化、预训练数据合成、scaling law 预测、词表优化、模型蒸馏与压缩、长上下文能力优化等。 2. 多模态 post-training:迭代 post-training 训练策略(SFT/RLHF),专项能力数据迭代,参与模型能力评测及评测数据和评估标准的迭代。 3. 多模态推理和通用 agent:通过强化学习(RL)持续提升多模态模型推理能力和执行任务能力,打造多模态的 test scaling laws,并推动模型对网络和虚拟世界的交互和任务完成能力。 4. 统一理解生成:构建视觉统一理解生成大模型,推进多模态统一生成与理解的推理和交互新范式。
通义千问(Qwen)是由通义实验室自主研发的超大规模语言模型,具备跨语言、跨任务的理解与生成能力。Qwen系列模型,涵盖参数量从几百 M 到 T 级的基座大语言模型,并相继推出Qwen-VL、Qwen-Audio、Qwen-Omni、Qwen-Coder等系列模型。从多轮对话到代码生成,从逻辑推理到内容创作,从单一多模态到全模态统一理解生成,Qwen 正在打造全球领先的全模态模型技术体系,推动AI在企业服务、开发者生态、个人用户等领域的深度应用,引领下一代人工智能的发展。 视觉语言理解能力是Qwen最重要的能力之一,围绕 LLM 建设出具有视觉深度理解与推理能力的基座模型是团队的必经之路。结合视觉理解和推理能力的基础模型,将拓展到视频理解,GUI Agent,以及VLA 和机器人等场景中。团队负责:1)多模态基础模型的研发,包括融合视觉语言的跨模态理解模型设计,提升视觉基础模型在图像/视频中的视觉知识、空间感知、Omni Parsing等核心能力,并优化多模态大模型AI infra;2)探索多模态Agent和推理能力,构建支持网络世界(PC/Mobile/Web/游戏)交互的通用智能体;3)研究生成与理解统一的模型架构,实现跨模态生成与推理的协同优化。 工作职责 1. 多模态Pre-training:开展研究及进行实验。研究内容包括:数据清洗与筛选、数据配比优化、课程学习、视觉语言模型结构设计与优化、训练策略优化、预训练数据合成、scaling law预测、词表优化、模型蒸馏与压缩、长上下文能力优化等。 2. 多模态Post-training:迭代Post-training训练策略(SFT/RLHF),专项能力数据迭代,参与模型能力评测及评测数据和评估标准的迭代。 3. 多模态推理和通用Agent:通过强化学习(RL)持续提升多模态模型推理能力和执行任务能力,打造多模态的Test Scaling Laws,并推动模型对网络和虚拟世界的交互和任务完成能力。 4. 统一理解生成:构建视觉统一理解生成大模型,推进多模态统一生成与理解的推理和交互新范式。
团队介绍: "阿里巴巴国际数字商业集团的智能技术团队,负责阿里巴巴旗下多个国际化电商平台的搜索、推荐、广告、用增等技术。团队致力于将最前沿的AI技术与国际化电商业务问题深度结合,为用户打造更好更智能化的网上购物体验,同时赋能百万商家实现更高效的经营。 选择加入我们意味着投身入于高速发展的国际化电商业务,一起打造最先进的AI技术以驱动全球电商业务发展。" 职位描述: 1. 打造行业领先的AI工程平台: 设计并构建支撑算法模型高效迭代的标准化平台体系(特征平台、训练平台、在线推理框架等),打通算法创新与业务验证的“任督二脉”,加速模型价值落地。 2. 攻坚大模型工程化挑战: 深入探索生成式AI(AIGC)技术在实际业务中的规模化落地,主导大模型训练、推理加速、性能优化等核心工程难题的解决。 3. 开拓AI创新应用的边界: 积极探索AI在搜索/推荐/广告(搜推广)等核心场景的颠覆性应用(如生成式召回、生成式排序、行为大模型),以及AI Agent技术在智能运维、资源优化、智能客服助手等领域的创新实践,为业务创造新价值。
1.基于开源项目 Ray,打造业内领先的通用分布式计算引擎,包括但不限于以下方向:引擎内核(分布式Task调度与执行)、分布式数据处理框架、分布式在线服务编排框架等; 2.面向 Data + AI,支持和拓展以 Ray 为 infra 的多种业务场景,包括但不限于以下方向:数据科学、大模型训练数据管道服务、在线推理与离线推理、AI Agent与应用系统、隐私计算、图计算等; 3.与 K8S 深度融合,建设云原生环境下超大规模分布式系统的服务能力与平台化能力,为业务提供高可用、可扩展、高易用性的集群化服务; 4.参与开源共建与合作,提升团队与个人在业界的影响力。