vivo机器人VLA大模型专家
社招全职5年以上研发类地点:上海 | 东莞状态:招聘
任职要求
1、专业背景:计算机视觉、机器人学、自然语言处理等相关专业博士学历,研究方向聚焦多模态大模型、具身智能或机器人决策控制。 2、技术能力: (1)精通PyTorch/TensorFlow框架,掌握VLA模型(如RT-2、OpenVLA、Diffusion Policy)的改进与部署,熟悉强化学习、模仿学习等技术; (2)熟悉多模态对齐技术(CLIP、DINOv2等),具备视觉语言模型(VLM)与动作生成模块的联合调优经验; (3)掌握机器人操作系统(ROS/ROS2),有机器人感知-决策-控制全链路开发经验者优先。 3、经验要求: (1)5年以上多模态算法研发经验,主导过VLA相关项目(如自动驾驶、机械臂操作等)并实现商业化落地; (2)在NeurIPS/ICML/CoRL等顶级会议发表VLA相关论文,或持有具身智能领域核心专利。
工作职责
1. VLA模型架构创新与研发: 主导机器人视觉-语言-动作(VLA)大模型的架构设计、算法研发与实现,攻克多模态特征高效对齐、动作序列生成与推理优化等关键技术,显著提升模型在机器人操作、自动驾驶等复杂任务中的端到端执行能力; 2. 机器人多模态智能系统构建: 设计并实现融合视觉、语言与动作信号的联合训练框架,研发基于Transformer或扩散模型的跨模态交互与理解机制,提升模型在动态复杂环境下的语义理解、情境推理与决策能力; 3. 模型高效部署与优化: 面向具身智能硬件平台(如机械臂、移动机器人),深度优化VLA模型的实时推理性能,运用算子融合、量化压缩、模型剪枝等前沿技术,实现模型在边缘设备的高效、低延迟部署; 4. 跨模态数据闭环体系搭建: 构建面向具身智能的大规模、高质量数据采集、增强与标注系统,开发仿真验证工具链,建立数据驱动的模型迭代闭环,持续提升VLA模型在真实场景下的鲁棒性与泛化能力。
包括英文材料
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
学历+
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
ROS+
https://www.youtube.com/watch?v=92Zz5nnd41c&list=PLk51HrKSBQ8-jTgD0qgRp1vmQeVSJ5SQC
https://www.youtube.com/watch?v=HJAE5Pk8Nyw
Ready to learn ROS2 and take your robotics skills to the next level?
https://www.youtube.com/watch?v=MWKnMPX0Yjg&list=PLU9tksFlQRircAdEplrH9NMm4WtSA8yzi
Do you want to know more about ROS the Robot Operating System?
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
NeurIPS+
https://neurips.cc/
ICML+
https://icml.cc/
相关职位

社招算法序列
负责机器人领域端侧大模型的研发和应用,研判大模型未来发展趋势为后续芯片NPU规划提供输入。主要工作方向包括: 1. 探索LLM、VLM、VLA大模型在端侧性能与精度极限 2. 跟进与判断大模型发展趋势为后续芯片NPU规划提供输入
更新于 2025-08-18
社招A210746
负责VLA(视觉-语言-行动)多模态大模型在自动驾驶和机器人场景中的前沿算法研究,涵盖场景理解、语义引导决策、时空建模等核心能力; 主导VLA模型预研,构建可泛化、高可解释性的多模态基座大模型,为未来6~12个月技术演进提供基础支撑; 与高校及实习生协作,探索VLA的长期发展方向,包括表征学习,具身智能、慢系统蒸馏快系统等核心议题; 撰写高水平论文、技术文档,推动VLA方向在CVPR、NeurIPS、ICLR、CoRL等会议中的学术影响力。
更新于 2025-03-26