顺丰VLA算法工程师
社招全职3-5年地点:深圳状态:招聘
任职要求
1、人工智能、模式识别或计算机专业的硕士或者博士; 2、数学基础扎实,熟悉概率统计和机器学习相关的理论体系; 3、熟悉主流3D视觉,SLAM/VIO/LIO相关算法及算法库; 4、具备VLA/VLM/LLM等大模型网络设计、…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1、负责机器人大模型和室内语义导航技术方案设计与实现; 2、负责任务规划与控制策略,提升系统的泛化性与灵活性,以及物理执行模块高效性; 3、构建面向物流作业场景的VLA数据集与仿真环境;
包括英文材料
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
SLAM+
https://docs.mrpt.org/reference/latest/tutorial-slam-for-beginners-the-basics.html
[英文] SLAM for Dummies
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf
A Tutorial Approach to Simultaneous Localization and Mapping
https://ouster.com/insights/blog/introduction-to-slam-simultaneous-localization-and-mapping
SLAM is an essential piece in robotics that helps robots to estimate their pose – the position and orientation – on the map while creating the map of the environment to carry out autonomous activities.
[英文] What Is SLAM?
https://www.mathworks.com/discovery/slam.html
How it works, types of SLAM algorithms, and getting started
还有更多 •••
相关职位
校招
1. 推进机器人多模态大模型(VLM/VLA)的工程化落地:涵盖预训练、微调、训练加速和效果调优; 2. 基于issac sim搭建仿真环境验证操作模型,设计real2sim2real迁移框架,加速算法验证与落地; 3. 具身智能算法研发,包括不同数据配比/网络结构/本体构型,在toC场景完成长序列任务和技能泛化; 4. 研发自动化标注算法(2D/3D/VLA等),降低标注成本和提升标注质量; 5. 设计多模态数据(图像、视频和点云等)生成算法,增强数据多样性。
更新于 2025-08-14杭州
社招3年以上技术类-算法
1、设计并实现VLA算法方案,以量产落地为导向,熟悉RT-1/2、pi0等主流多模态具身大模型优劣,改善调优; 2、负责机器人具身操作任务的强化学习算法设计、开发和优化; 优化Sim2Real的迁移技术,提高算法鲁棒性;跟踪前沿技术,进行强化学习算法的调研、性能对比和评估; 3、研究多模态学习方法,结合视觉、触觉、力反馈提升机器人决策能力; 包括VLM的训练与微调,实现模型实际场景的落地需求,多模态数据集的构建、清洗等,提升算法性能和决策质量等。
更新于 2025-10-13杭州
社招
负责自动驾驶领域 VLM, VLA 算法研发,量产落地; 进行数据建设,指令微调,偏好对齐,模型的优化; 探索多模态的大模型,端到端 VLA 模型 在自动驾驶业务的应用。
更新于 2025-06-25广州|上海