通义VLA算法工程师
校招全职通义2026届秋季校园招聘地点:北京 | 杭州状态:招聘
任职要求
1. 来自全球Top高校计算机科学、人工智能、机器学习、深度学习、软件工程、自动化、电子、控制相关领域应届毕业生。 2. 在大规模多模态模型训练、VLA模型设计与训练、(Real2)Sim2Real、、机器人感知、抓取、操作、移动、全身控制、规划等领域有扎实的理论基础和实践经验,并至少在其中一个方向有代表性学术成果或项目经历。 3. 在国际顶级人工智能/机器人的会议/期刊(如NeurIPS、ICML、ICLR、TPAMI,IRO…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
通义千问(Qwen)是由通义实验室自主研发的超大规模语言模型,具备多模态、多语言、跨任务的理解与生成能力。Qwen系列模型,涵盖参数量从亿级到万亿级的基座大语言模型,并相继推出Qwen-VL、Qwen-Audio、Qwen-Omni、Qwen-Coder、Qwen-Image等系列模型。从多轮对话到代码生成,从逻辑推理到内容创作,从单一多模态到全模态统一理解生成,Qwen正在打造全球领先的全模态模型技术体系,推动AI在企业服务、开发者生态、个人用户等领域的深度应用,引领下一代人工智能的发展。 在此基础上,我们致力于研究Qwen面向具身智能领域的下一代基础模型,将Qwen强大的认知与推理能力赋予物理世界的机器人智能体,打破数字世界与物理世界的壁垒。团队的目标是研发能够理解人类意图、感知物理环境、并自主规划执行复杂任务的通用具身基础模型。我们相信,通过融合前沿的多模态大模型与机器人技术,我们将开创通用人工智能的下一个篇章,让AI真正走进并服务于现实生活。 工作职责: 1. 具身基础模型研究:构建面向机器人的多模态基础模型,将视觉语言模型与机器人中心的物理世界理解与决策深度融合,构建具身领域的高质量的大规模真实与仿真数据集,设计并训练支持感知、动作、记忆、规划与语言理解统一的具身基础模型。 2. 测评基准建立:构建面向机器人多模态基础模型的能力基准,设计有效的测试基准,持续构建能反映基础模型在物理世界真实能力的高效测评系统。 3. 软硬件系统整合部署:构建机器人软硬件一体化系统,将算法部署在真实机器人平台(如机械臂、人形机器人)上,进行端到端的验证与迭代,推动研究成果的实际落地。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
NeurIPS+
https://neurips.cc/
ICML+
https://icml.cc/
ICLR+
https://iclr.cc/
还有更多 •••
相关职位
社招3-5年
1、负责机器人大模型和室内语义导航技术方案设计与实现; 2、负责任务规划与控制策略,提升系统的泛化性与灵活性,以及物理执行模块高效性; 3、构建面向物流作业场景的VLA数据集与仿真环境;
更新于 2025-12-19深圳
社招3-5年
1、负责机器人大模型和室内语义导航技术方案设计与实现; 2、负责任务规划与控制策略,提升系统的泛化性与灵活性,以及物理执行模块高效性; 3、构建面向物流作业场景的VLA数据集与仿真环境;
更新于 2026-01-16深圳
校招
1. 推进机器人多模态大模型(VLM/VLA)的工程化落地:涵盖预训练、微调、训练加速和效果调优; 2. 基于issac sim搭建仿真环境验证操作模型,设计real2sim2real迁移框架,加速算法验证与落地; 3. 具身智能算法研发,包括不同数据配比/网络结构/本体构型,在toC场景完成长序列任务和技能泛化; 4. 研发自动化标注算法(2D/3D/VLA等),降低标注成本和提升标注质量; 5. 设计多模态数据(图像、视频和点云等)生成算法,增强数据多样性。
更新于 2025-08-14杭州