顺丰YWS-数据开发工程师(采购综合)
社招全职3-5年地点:深圳状态:招聘
任职要求
1、3年及以上数据分析和开发相关经验,有物流BI工作经验优先。 2、熟悉Hive、SPARK、HDFS,SQL等大数据技术工具和应用,大数据离线/实时数据开发经验优先,有算法经验相关优先 3、精通SQL语言,如HiveSQL、SprakSQL、SQL等(HiveSQL为心须项),且有丰富的HiveSQL、SprakSQL性能调优经验,具备Flink实时数据开发经验者优先; 4、熟练掌握企业级数据仓库体系架构,数据仓库模型、分层体系构建、元数据管理、数据质量监控等,具备礼实数据仓库建模理论知识; 5、对数据敏感,能够快速理解业务,具备良好的逻辑分析能力和系统性思维能力,结构化拆解能力。 6、沟通能力强、工作严谨、能够独立思考、有较强的责任心及团队协作能力。
工作职责
1、采购综合线相关的业数底盘模型、报表研发 2、采购综合数据的准确性时效性监控和优化 3、负责采购综合内部数据资产建设,存量表及新增表管理,以及日常的运维工作;
包括英文材料
数据分析+
[英文] Data Analyst Roadmap
https://roadmap.sh/data-analyst
Step by step guide to becoming an Data Analyst in 2025
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
HDFS+
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware.
https://www.ibm.com/cn-zh/think/topics/hdfs
Hadoop 分布式文件系统 (HDFS) 是一种管理大型数据集的文件系统,可在商用硬件上运行。
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
性能调优+
https://goperf.dev/
The Go App Optimization Guide is a series of in-depth, technical articles for developers who want to get more performance out of their Go code without relying on guesswork or cargo cult patterns.
https://web.dev/learn/performance
This course is designed for those new to web performance, a vital aspect of the user experience.
https://www.ibm.com/think/insights/application-performance-optimization
Application performance is not just a simple concern for most organizations; it’s a critical factor in their business’s success.
https://www.oreilly.com/library/view/optimizing-java/9781492039259/
Performance tuning is an experimental science, but that doesn’t mean engineers should resort to guesswork and folklore to get the job done.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
数据仓库+
https://www.youtube.com/watch?v=9GVqKuTVANE
From Zero to Data Warehouse Hero: A Full SQL Project Walkthrough and Real Industry Experience!
https://www.youtube.com/watch?v=k4tK2ttdSDg
相关职位
社招3-5年
1、人资、财务、采购综合相关的业数底盘模型、报表研发 2、人资、财务、采购综合数据的准确性时效性监控和优化 3、人资、财务、采购综合内部数据资产建设,存量表及新增表管理,以及日常的运维工作 4、人资、财务、采购综合相关数据分析、数据产品、数据变现等分析型工作
更新于 2025-09-02
社招3-5年
1、人资、财务、采购综合相关的业数底盘模型、报表研发 2、人资、财务、采购综合数据的准确性时效性监控和优化 3、人资、财务、采购综合内部数据资产建设,存量表及新增表管理,以及日常的运维工作 4、人资、财务、采购综合相关数据分析、数据产品、数据变现等分析型工作
更新于 2025-09-03