阿里巴巴天猫校园-销售-商家拓展
任职要求
1、工作年限3年以内,优秀的经验可放宽到5年内,有高校从业经验或者行业经验为佳。 2、抗压能力强、心理素质强。 3、有较强的…
工作职责
1、负责天猫校园共享服务部业务拓展、销售工作,与行业客户建立良好的合作关系。 2、负责区域客户的维护、拓展、开发,并推动产品的销售,完成产品销售KPI指标。 3、负责区域内高校相关信息地推和收集,完成新客户转化。
团队介绍:生活服务业务依托于抖音、抖音极速版等平台,致力于促进用户与本地服务的连接。过去一年,生活服务业务开创了全新的视频种草和交易体验,让更多用户通过抖音发现线下好去处,也帮助众多本地商家拓展了新的经营阵地。我们期待你的加入,一同为亿万用户创造更美好的生活。 课题介绍:生活服务行业在数字化转型中面临效率提升和成本优化的迫切需求,传统商家依赖销售老师处理商品管理、订单咨询、营销推广等环节,存在响应速度慢、标准化程度低、人力成本高等痛点。基于大语言模型(LLM)的对话系统具备自然语言理解、多任务处理、知识推理等能力,可以为商家提供智能客服、流程自动化、数据分析等场景的解决方案。然而,现有通用模型在垂直领域应用中仍存在领域知识匮乏、复杂任务执行能力不足、多模态交互受限等问题,需结合RAG、Function Calling、多模态等技术进行针对性优化。 课题挑战/必要性: 生活服务行业规则多变(如季节性促销、政策调整),需设计低延迟的领域知识库动态更新机制。另外,商家需求多样,对Agent工具调用、动态规划与异常处理能力提出了很高的要求。同时,在交互中期望能够实现语音、图像、文本等多模态信息的内容理解能力与自然交互,解决语义一致性的难题。 课题内容: 1、RAG在垂直领域的优化:构建生活服务行业知识图谱与动态检索库,研究检索增强生成中的上下文压缩技术与深度思考技术,提升答案准确性; 2、Function Calling与业务流程自动化:设计面向商家的工具库,支持自然语言指令到工具调用的精准映射,研究强化学习(RL)在工具调用领域的应用提升模型对领域外工具的识别泛化能力; 3、对话Agent的决策与协作能力:研究基于强化学习(RL)优化Agent的任务规划能力,研究多Agent协作机制; 4、多模态交互与生成:深入研究图像内容理解,开发能够与商家自然沟通的多模态交互与生成系统。
团队介绍:生活服务业务依托于抖音、抖音极速版等平台,致力于促进用户与本地服务的连接。过去一年,生活服务业务开创了全新的视频种草和交易体验,让更多用户通过抖音发现线下好去处,也帮助众多本地商家拓展了新的经营阵地。我们期待你的加入,一同为亿万用户创造更美好的生活。 课题介绍:生活服务行业在数字化转型中面临效率提升和成本优化的迫切需求,传统商家依赖销售老师处理商品管理、订单咨询、营销推广等环节,存在响应速度慢、标准化程度低、人力成本高等痛点。基于大语言模型(LLM)的对话系统具备自然语言理解、多任务处理、知识推理等能力,可以为商家提供智能客服、流程自动化、数据分析等场景的解决方案。然而,现有通用模型在垂直领域应用中仍存在领域知识匮乏、复杂任务执行能力不足、多模态交互受限等问题,需结合RAG、Function Calling、多模态等技术进行针对性优化。 课题挑战/必要性: 生活服务行业规则多变(如季节性促销、政策调整),需设计低延迟的领域知识库动态更新机制。另外,商家需求多样,对Agent工具调用、动态规划与异常处理能力提出了很高的要求。同时,在交互中期望能够实现语音、图像、文本等多模态信息的内容理解能力与自然交互,解决语义一致性的难题。 课题内容: 1、RAG在垂直领域的优化:构建生活服务行业知识图谱与动态检索库,研究检索增强生成中的上下文压缩技术与深度思考技术,提升答案准确性; 2、Function Calling与业务流程自动化:设计面向商家的工具库,支持自然语言指令到工具调用的精准映射,研究强化学习(RL)在工具调用领域的应用提升模型对领域外工具的识别泛化能力; 3、对话Agent的决策与协作能力:研究基于强化学习(RL)优化Agent的任务规划能力,研究多Agent协作机制; 4、多模态交互与生成:深入研究图像内容理解,开发能够与商家自然沟通的多模态交互与生成系统。
团队介绍:生活服务业务依托于抖音、抖音极速版等平台,致力于促进用户与本地服务的连接。过去一年,生活服务业务开创了全新的视频种草和交易体验,让更多用户通过抖音发现线下好去处,也帮助众多本地商家拓展了新的经营阵地。我们期待你的加入,一同为亿万用户创造更美好的生活。 课题介绍:生活服务行业在数字化转型中面临效率提升和成本优化的迫切需求,传统商家依赖销售老师处理商品管理、订单咨询、营销推广等环节,存在响应速度慢、标准化程度低、人力成本高等痛点。基于大语言模型(LLM)的对话系统具备自然语言理解、多任务处理、知识推理等能力,可以为商家提供智能客服、流程自动化、数据分析等场景的解决方案。然而,现有通用模型在垂直领域应用中仍存在领域知识匮乏、复杂任务执行能力不足、多模态交互受限等问题,需结合RAG、Function Calling、多模态等技术进行针对性优化。 课题挑战/必要性: 生活服务行业规则多变(如季节性促销、政策调整),需设计低延迟的领域知识库动态更新机制。另外,商家需求多样,对Agent工具调用、动态规划与异常处理能力提出了很高的要求。同时,在交互中期望能够实现语音、图像、文本等多模态信息的内容理解能力与自然交互,解决语义一致性的难题。 课题内容: 1、RAG在垂直领域的优化:构建生活服务行业知识图谱与动态检索库,研究检索增强生成中的上下文压缩技术与深度思考技术,提升答案准确性; 2、Function Calling与业务流程自动化:设计面向商家的工具库,支持自然语言指令到工具调用的精准映射,研究强化学习(RL)在工具调用领域的应用提升模型对领域外工具的识别泛化能力; 3、对话Agent的决策与协作能力:研究基于强化学习(RL)优化Agent的任务规划能力,研究多Agent协作机制; 4、多模态交互与生成:深入研究图像内容理解,开发能够与商家自然沟通的多模态交互与生成系统。
1.目的地区域销售结果达成: 1)主导辖区国内跟团、景酒套餐业务策略;不局限于优质商家引入、商品覆盖、商家运营、营销方案、商品爆款等策略,确保业务增长和辖区优质商家成长。 2)监控经营数据,周期性复盘,及时发现业务异常并优化,推动业绩指标达成。 2.目的地优质商家拓展、热销爆款商品营销策略: 1)目的地度假优质商家拓展:引入符合用户需求供给的优质供应商。 2)商品选品策略:主导爆款产品落地,协同商家、总部营销团队打造爆款商品、保障业务目标达成。 3.商家运营: 1)基于旅行社运营能力模型,协同运营团队提升旅行社客户经营结果和效率提升。 2)熟练运营商家标杆策略,通过标杆卷动辖区整体动销和提升辖区商家单产。