阿里巴巴1688-搜推高级算法工程师-大模型
社招全职2年以上地点:杭州状态:招聘
任职要求
1.硕士及以上学历,计算机/人工智能相关专业,3年以上NLP或搜索算法经验; 2.熟悉语义匹配模型(如DSSM、Transformer)、用户意图分类与Query改写技术; 3.具备大数据处理能力(Spark/Flink),熟悉搜索系统全流程(召回、排序、重排); 4.在多模态理解、信息检索方向有顶会(ACL/ICML/NeurIPS/WWW)论文发表者优先; 5.对用户行为分析、需求挖掘有深刻理解,能通过A/B测试驱动算法优化。
工作职责
构建下一代基于大型语言模型(LLM)的智能搜索系统,通过深度语义理解与用户意图解析,实现从“关键词匹配”到“需求精准洞察”的跨越,推动搜索技术从信息检索向智能交互与决策赋能的范式升级! 1.负责设计并实现基于LLM的智能搜索架构,优化语义理解、意图识别与结果排序算法; 2.构建用户需求画像系统,结合实时行为数据动态调整搜索策略,提升搜索结果相关性与用户满意度; 3.探索生成式搜索技术(如Query扩展、结果摘要生成),推动搜索从“信息呈现”向“决策辅助”升级。
包括英文材料
学历+
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
信息检索+
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
ICML+
https://icml.cc/
NeurIPS+
https://neurips.cc/
相关职位
社招3年以上技术类-算法
所在团队负责阿里国际贸易平台上的所有推荐产品,包括猜你喜欢、详情页推荐、个性化楼层等。团队通过大数据和深度学习建模,帮助平台上买卖家快速达成生意。来到这里,你将有机会深度接触到业界的计算平台和深度学习算法,并将算法技术转化为商业价值。具体地,你将有机会负责: 1. 用户画像、召回、排序和策略等模块的技术规划和算法设计,通过技术创新提升买卖家匹配效率。 2. 通过大规模深度学习和图学习,在面对数据稀疏和多国家多行业的情况下对用户实时兴趣、CTR预估、询盘和交易转化预估等问题建模。 3. 通过多样性和发现性策略,拓展用户需求,提升兴趣发现能力,进一步完善和提升推荐侧的产品价值。 4. 探索大语言模型+搜推的创新应用方向,LLM在推荐领域下的全链路建设,包括但不限于大规模的预训练、SFT、LoRA和RLHFL等技术,落地大语言模型+搜推的新的应用落地场景(如生成式推荐等)。
更新于 2025-09-23
社招
1. 负责淘系移动端AI关键业务场景的方案探索和业务落地; 2. 负责机器学习和深度学习在端上用户情境感知、体验优化、兴趣推断等领域中的应用; 3. 负责排序算法在端上用户意图引擎、端上重排等领域中的应用; 4. 负责探索端侧大模型在搜推和互动等业务场景的落地和应用; 5. 负责与工程团队合作,分析和提升模型性能,包括但不限于推理速度、内存占用和能耗优化; 6. 负责端智能算法的长期探索,如隐私计算、端边云协同等。
更新于 2025-07-11

社招5年以上
- 深度参与小宇宙推荐、搜索系统的研发和优化 - 规划和参与小宇宙推荐模型、内容理解底层能力的建设 - 与产品、运营等团队协作,共同挖掘数据,完善各类画像 - 参与小宇宙业务相关的AI场景产品落地