
哈啰感知算法实习生(静态要素感知方向)-【自动驾驶】
实习兼职算法地点:上海状态:招聘
任职要求
1、熟悉车道线/路沿等静态要素检测相关算法原理及设计; 2、熟悉主流深度学习算法,包括但不限于目标检测、分割、跟踪、多任务学习、立体视觉等领域,有计算机视觉、模式识别领域顶会,(CVPR/ICCV/ECCV/ICML/NeurIPS)或顶刊(TPAMI/IJCV/TIP)作品者优先,顶级学术比赛获奖者或实际工程项目经验者优先; 3、掌握一种以上的深度学习训练框架(Pytorch,MXNet,Tensorflow...); 4、有扎实的数理基础,优秀的编程能力,快速学习能力; 5、2027届优先,可实习三个月及以上、一周全勤优先。
工作职责
1 、负责无人车地面静态要素感知算法研发,包含车道线、路沿等要素检测工作; 2、探索2D/3D检测,以及时序和多传感器融合算法; 3、负责核心算法或模型的原创设计以及工程化落地,如模型优化、模型部署等; 4、掌握通过数据闭环持续迭代模型的能力。
包括英文材料
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
ECCV+
https://eccv.ecva.net/
ECCV is the official event under the European Computer Vision Association and is biannual on even numbered years.
ICML+
https://icml.cc/
NeurIPS+
https://neurips.cc/
TPAMI+
https://www.computer.org/csdl/journal/tp
IEEE Transactions on Pattern Analysis and Machine Intelligence is a leader in artificial intelligence.
IJCV+
https://link.springer.com/journal/11263
International Journal of Computer Vision (IJCV) details the science and engineering of this rapidly growing field.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
MXNet+
https://www.tutorialspoint.com/apache_mxnet/index.htm
Apache MXNet is a powerful deep learning framework that supports both symbolic and imperative programming.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
相关职位

实习算法序列
1、探索自动驾驶前沿算法,如端到端算法、闭环训练方式等,完成模型训练与方法验证; 2、参与感知算法研发,解决 3D Occupancy、动静态要素的感知难点问题;
更新于 2025-10-09

实习算法序列
1、参与自动驾驶静态要素(如红绿灯、箭头、地面标识、车道线、路沿等)的云端自动标注系统研发,助力真值系统构建与感知系统的高效数据生产; 2、探索大模型(如多模态/视觉语言模型)在地图Agent中的应用,推动静态要素自动标注流程的泛化能力、理解能力与自动决策水平; 3、研究corner case的发现与筛选方法,结合分布建模、异常检测、大模型语义理解等手段,提升自动标注系统的质量与鲁棒性; 4、协助构建从数据采集、挖掘、标注、训练、部署到badcase回归的高效闭环体系,实现自动标注系统的迭代优化; 5、参与核心算法或模型的原创设计与工程落地,包括模型压缩、评测体系构建、性能调优等任务。
更新于 2025-07-30

实习算法序列
1.负责城区/高速NOA场景下的感知算法研发,包含车道线、道路边界、地面箭头等路面静态要素检测工作; 2.探索先验地图前融合算法来提升遮挡、复杂路口以及超视距区域感知能力上限; 3.探索LLM和检测模型结合提高道路场景理解能力; 4.负责核心算法或模型的原创设计以及工程化落地,如型优化、评测体系化构建、case迭代等; 5.掌握数据挖掘、标注、训练、部署及badcase回归等闭环链路,并伴随业务开展持续优化; 6.掌握通过数据闭环持续迭代模型的能力。
更新于 2025-01-17