
地平线视觉深度学习算法实习生(云端自动标注与大模型方向)
实习兼职算法序列地点:北京 | 上海状态:招聘
任职要求
1、计算机视觉、人工智能、机器人、电子信息、机器学习等相关专业的硕士/博士在读; 2、熟悉主流视觉/多模态深度学习算法,具备以下至少一个方向的经验者优先: 2.1、目标检测、语义/实例分割、静态要素识别 2.2、多模态理解(如视觉-语言模型、地图上下文建模) 2.3、大模型在感知或地图场景下的微调与下游应用; 3、熟练掌握至少一种深度学习框架(如 PyTorch、TensorFlow),具备良好的调试和实验能力; 4、扎实的数据结构和算法基础,良好的编程习惯,熟悉 Python/C++; 5、有顶会论文(CVPR/ICCV/ECCV/NeurIPS/ICML)或实际工程项目经历者优先; 6、对自动标注、感知Agent方向有浓厚兴趣,具有主动学习和探索精神; 7、每周实习不少于 3 天,实习周期不短于 3 个月(长期实习优先)。 【加分项】 1、有静态要素自动标注、地图建图或自动驾驶相关项目经验; 2、熟悉大模型(如GPT-4V、SAM、LLaVA、GroundingDINO等)在自动标注中的应用; 3、有 open-world / long-tail / weak-supervision / corner-case 研究经验; 4、熟悉基于数据分布的异常检测、筛选机制,能支持自动标注质量控制与迭代。
工作职责
1、参与自动驾驶静态要素(如红绿灯、箭头、地面标识、车道线、路沿等)的云端自动标注系统研发,助力真值系统构建与感知系统的高效数据生产; 2、探索大模型(如多模态/视觉语言模型)在地图Agent中的应用,推动静态要素自动标注流程的泛化能力、理解能力与自动决策水平; 3、研究corner case的发现与筛选方法,结合分布建模、异常检测、大模型语义理解等手段,提升自动标注系统的质量与鲁棒性; 4、协助构建从数据采集、挖掘、标注、训练、部署到badcase回归的高效闭环体系,实现自动标注系统的迭代优化; 5、参与核心算法或模型的原创设计与工程落地,包括模型压缩、评测体系构建、性能调优等任务。
包括英文材料
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
编程规范+
[英文] Google Style Guides
https://google.github.io/styleguide/
Every major open-source project has its own style guide: a set of conventions (sometimes arbitrary) about how to write code for that project. It is much easier to understand a large codebase when all the code in it is in a consistent style.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
ECCV+
https://eccv.ecva.net/
ECCV is the official event under the European Computer Vision Association and is biannual on even numbered years.
NeurIPS+
https://neurips.cc/
ICML+
https://icml.cc/
AI agent+
https://www.ibm.com/think/ai-agents
Your one-stop resource for gaining in-depth knowledge and hands-on applications of AI agents.
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
GPT+
https://www.youtube.com/watch?v=kCc8FmEb1nY
We build a Generatively Pretrained Transformer (GPT), following the paper "Attention is All You Need" and OpenAI's GPT-2 / GPT-3.
相关职位
实习算法与软件
1.负责理想汽车VLA模型方法研发和工程落地,包括但不限于视觉多模态理解、高级指令拆解及多模态policy预测; 2.负责设计高性能上限,具备量产能力的VLA模型算法,对包括但不限于diffusion、VLM等模型算法有实操经验; 3.开发高效离线训练框架,以及可实时运行的在线推理框架,优化模型推理性能,研发模型部署工具链和优化工具; 4.建立云端数据感知/决策联合标注Pipeline、数据挖掘机制以及难样本分析等工具链,通过数据闭环持续选代模型能力。
实习
1、探索自动驾驶云端大模型算法研发和优化,包括但不限于4D真值自动化标注、场景理解等方向; 2、探索云端视觉大模型的前沿算法与应用,包括但不限于depth/semantic/flow等方向 3、探索基于海量量产数据,研发无监督/自监督算法,持续探索大模型的语义理解能力和空间感知能力;
更新于 2025-04-25
实习
1、探索自动驾驶云端大模型算法研发和优化,包括但不限于4D真值自动化标注、场景理解等方向; 2、探索云端视觉大模型的前沿算法与应用,包括但不限于depth/semantic/flow等方向 3、探索基于海量量产数据,研发无监督/自监督算法,持续探索大模型的语义理解能力和空间感知能力;
更新于 2025-07-28