
平安科技资深算法工程师
社招全职计算机网络技术类地点:上海状态:招聘
任职要求
1.计算机科学或相关领域的硕士及以上学历,熟练掌握NLP基础理论和算法,在一个或多个领域(如文本分类、情绪识别、语义理解、信息抽取、舆情挖掘等)能够独立开展研发工作 2.具备大模型训练和应用开发经验,如语料清洗、预训练、微调、prompt优化、DPO等 3.精通pytorch/tensorflow深度学习框架,在深度学习有深刻理解,有相关实践经验 4.持续阅读文献,对前沿技术保持追踪;具有良好的工程实践能力,熟悉linux开发环境,熟练掌握python、C/C++等至少一种编程语言 5.具有优秀的逻辑思维能力和数据分析能力,善于分析解决问题,具备良好的沟通能力和团队协作能力;在国际顶级会议、期刊上发表论文经验者优先;有内容理解、文本挖掘、推荐搜索、对话系统、强化学习等方向经验者优先
工作职责
1.负责金融客服和催收领域的坐席助手、AI机器人等相关产品的研发,能独立负责自然语言处理应用研究和算法落地工作,包括话术质检、风险预警、对话摘要、关键内容提取、策略推荐、文本生成等 2.跟踪业界研究成果,将前沿NLP、大模型技术应用于相关场景中,根据实际应用效果不断优化模型和算法,研究方向包括但不限于大模型推荐、对话生成、离线强化学习等 3.深度理解业务,与业务方紧密配合达成业务目标
包括英文材料
学历+
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
数据分析+
[英文] Data Analyst Roadmap
https://roadmap.sh/data-analyst
Step by step guide to becoming an Data Analyst in 2025
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
相关职位

社招5年以上计算机网络技术类
1、视频理解算法研发与多模态分析:1)主导视频内容理解算法的端到端研发,覆盖动作识别、事件检测、微表情及情感语义分析,构建从数据预处理到模型部署的全流程方案。2)设计例如基于Video Swin Transformer、3D CNN及CLIP等的多模态分析框架,实现“视觉-音频-文本”多维度内容解析。3)探索前沿技术如可控视频理解、物理引擎整合,提升复杂场景下的语义解析精度。 2、智能剪辑系统设计与自动化流程:1)开发基于多模态的智能剪辑框架,实现镜头分割、关键帧提取及内容摘要的自动化处理。2)设计自然语言交互式剪辑工具,支持用户通过文本指令或语音交互完成视频编辑,提升创作效率。 3、多模态交互与场景落地:涉及自然语言交互式编辑工具,支持用户通过对话逐步细化生成内容,提升创作自由度。 4、技术落地与产品化:1)与工程团队协作,将算法集成至业务系统,解决实际场景中的挑战。2) 设计标准化工具链,支持用户通过简单接口调用生成能力。 5、可独立进行跨部门技术方案评审,协调各方需求确保项目按时交付。跟踪国际顶会最新前沿技术成果,定期组织技术分享。指导初级工程师,建立算法知识库和代码库。
更新于 2025-07-31

社招2年以上计算机网络技术类
1. 负责声纹身份、情绪、年龄、性别、健康状况识别等相关算法的研发; 2. 根据具体场景、环境、设备,进行模型的精度优化、性能优化; 3. 实现模型的高度棒性,具有活体检测和防攻击能力; 4. 引入、优化多模态大模型研发技术方案,熟悉多维特征向量处理过程; 5. 跟进前沿技术发展,实现现有功能提升,以及拓展新的模型,同步形成论文与专利等知识成果。
更新于 2025-09-12