logo of sensetime

商汤GenAI方案工程师

社招全职售前解决方案地点:香港状态:招聘

任职要求


1.Educational Qualification:
oBachelor’s degree or higher in Computer Science or a related field.
2.Experience:
oOver 2 years of experience in software development, with a focus on AI or LLM technologies being advantage.
3.Technical Skills:
oKnowledge of LLM and Generative AI technologies is a must.
oExperience with programming languages Python,Java etc. is must.
oExperienced in LLM-based software development …
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1.Base Location: Hong Kong, with a focus on supporting the Asia-Pacific regions including Hong Kong, Macau, and other specified areas.
2.Market and Customer Engagement:
oCollaborate with the sales team to develop sales strategies based on market trends and customer needs.
oEngage with customers to understand their requirements and provide tailored LLM (Large Language Model) solutions.
3.Technical Support and Solutions Development:
oOffer comprehensive technical support throughout the sales process, including requirement analysis, designing solutions, engaging product development, and drafting technical proposals for the bidding process.
4.Post-Sales and Delivery Support:
oAssist in delivery project management, providing technical support, and facilitating user testing.
oOffer post-sales technical support to ensure customer satisfaction and resolve any emerging issues.
包括英文材料
大模型+
Python+
还有更多 •••
相关职位

logo of sensetime
社招售前解决方案

1. Technical Solution Design & Implementation •Requirement Analysis: Deep dive into client needs, analyze business scenarios, and design customized LLM application solutions •Architecture Design: Create scalable, high-performance LLM application architectures including data processing pipelines and model integration strategies •Technical Validation: Build proof-of-concept (POC) to validate technical feasibility and demonstrate value •Deployment Execution: Lead on-site deployment, configuration optimization, and performance monitoring of LLM applications 2. Programming Development Requirements •Framework Mastery: Proficient in VLM, RAG, LangChain, and other AI frameworks for development •Vector Database Expertise: Skilled in designing and optimizing Milvus, Pinecone, and other vector databases •Prompt Engineering: Advanced prompt design and agent development skills to optimize model output quality •Integration Development: API integration capabilities for seamless LLM system integration •Deployment Tools: Familiarity with LLM application deployment frameworks 3. Client Interaction & Support •On-site Support: Provide professional technical support on client premises, quickly resolving technical challenges •Product Demonstrations: Conduct expert product demonstrations and technical presentations •Training Services: Deliver comprehensive training to client teams to enhance usage efficiency and satisfaction •Relationship Management: Establish and maintain strong client relationships as a trusted technical advisor 4. Agile Response & Project Management •Rapid Response: Timely resolution of client issues ensuring SLA compliance •Problem Diagnosis: Systematic troubleshooting of complex technical issues •Project Coordination: Collaborate with internal R&D, product, and sales teams to drive project success •Continuous Follow-up: Regular client check-ins to understand evolving needs and recommend upgrade solutions 5. Localization Adaptation & Compliance •Cultural Adaptation: Customize technical solutions to align with Hong Kong/Macau market characteristics and business practices •Multilingual Support: Provide technical support in Cantonese, English, and Mandarin •Compliance Assurance: Ensure technical solutions meet local regulations and industry standards •Market Insights: Collect market feedback to inform product iteration and strategic decisions

更新于 2025-11-05香港
logo of bytedance
校招A88401

团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 课题背景: 随着LLM大模型和多模态技术的快速发展,给下一代广告系统带来了重大机会,LLM可以根据广告平台的投放经验和数据,并且结合对广告大模型的理解,通过Reflection、RLHF等技术构建与真实环境交互的Agent,从而实现专家级别的广告账号管理,实现最高的ROI。同时广告Agent可探索根据用户的兴趣,个性化实现在线素材生产,最终实现广告素材和创意样式的千人千面,极大撬动用户和商品的匹配效率。 课题挑战: 现有的LLM在垂直广告营销领域上尚不能给出专业且能提升效果的专业知识,并且Agent无法很好的操作和里面广告系统。在创意方面,视频生成模型质量还不能满足广告生成的要求,以及和投放系统结合千人千面的个性化效果。

更新于 2025-05-26北京
logo of bytedance
校招A107484A

团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 课题背景: 随着LLM大模型和多模态技术的快速发展,给下一代广告系统带来了重大机会,LLM可以根据广告平台的投放经验和数据,并且结合对广告大模型的理解,通过Reflection、RLHF等技术构建与真实环境交互的Agent,从而实现专家级别的广告账号管理,实现最高的ROI。同时广告Agent可探索根据用户的兴趣,个性化实现在线素材生产,最终实现广告素材和创意样式的千人千面,极大撬动用户和商品的匹配效率。 课题挑战: 现有的LLM在垂直广告营销领域上尚不能给出专业且能提升效果的专业知识,并且Agent无法很好的操作和里面广告系统。在创意方面,视频生成模型质量还不能满足广告生成的要求,以及和投放系统结合千人千面的个性化效果。

更新于 2025-05-26上海
logo of bytedance
校招A21204

团队介绍:推荐架构团队支撑字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、剪映等推荐系统架构的设计和开发,保障系统的稳定和高可用,致力于抽象系统通用组件和服务,建设推荐中台、数据中台;关于在线服务,在这里你有机会参与大规模机器学习在线预估框架的研发与优化,也有机会参与模型训练与调度等相关问题的研究与突破,解决系统瓶颈,降低成本开销;如你对大数据感兴趣,在这里也有机会参与通用实时计算系统的开发、构建统一的推荐特征中台,为推荐业务实现先进的消重、计数、特征服务等;我们期待热爱技术的你加入,一起创造更多可能。 课题介绍: 1、课题背景 在人工智能技术高速发展的背景下,推荐系统作为信息过滤与个性化服务的核心,面临多重挑战: (1)数据爆炸与模型复杂化 用户行为序列数据量呈指数级增长(百亿至千亿级/日),存储需求从单用户长序列扩展至多模态数据(文本、视频、Embedding等),传统存储架构面临读写性能瓶颈与成本压力;推荐大模型对数据质量敏感度提升,数据分布异常可能导致模型效果显著下降,亟需系统性数据质量评估与改进方法。 (2)异构计算与多模态处理需求 随着生成式AI(GenAI)的普及,多模态特征处理成为刚需,传统基于CPU的大数据框架(如Spark/Hadoop)难以高效处理非结构化数据,GPU/DPU等异构计算资源利用率不足;数据处理流程与模型训练脱节,ETL环节耗时长,CPU-GPU协同效率低下,导致算法迭代周期延长。 在此背景下,以数据为中心的人工智能(DCAI)与异构计算技术成为破局关键: -DCAI 强调通过数据质量优化与自动化处理链路提升模型性能,而非单纯依赖模型改进; -异构计算 通过统一调度CPU、GPU、DPU等资源,加速多模态数据处理与模型训练,实现降本增效。 2、课题目标 (1)构建支持多模态数据的低成本高性能存储引擎:支持百亿级用户行为序列与多模态数据混合存储,实现读写延时与存储量解耦,满足PB级数据天级回溯需求; (2)设计自适应数据演化的Schema管理机制:动态兼容特征增删改,确保训推一致性,降低模型迭代中的数据迁移成本; (3)研发多模态数据异构计算框架:实现CPU-GPU-DPU协同计算,加速ETL、特征处理与模型训练,提升资源利用率30%以上; (4)建立数据质量与模型性能的量化评估体系:开发自动化工具链,通过强化学习优化数据清洗、增强与异常检测流程; (5)打造以Python为核心的开发者生态:提供灵活API与可视化工具,支持快速接入多模态数据处理与DCAI优化链路。 3、研究内容 (1)多模态存储引擎与编码优化 - 混合存储架构 - 分层设计:行为序列采用时间分区+LSM-Tree存储,多模态数据(如图像/文本)采用对象存储+元数据索引,结合CXL内存池化技术降低访问延迟; - 编码优化:针对用户行为序列设计变长Delta编码,多模态数据采用深度学习压缩模型(如VAE),压缩比提升50%以上。 -Schema动态演化 - 开发基于Protobuf的版本化Schema语言,支持特征字段热更新,兼容历史数据回溯训练。 (2)异构计算框架与资源调度 - 计算引擎整合 - 基于Ray构建统一数据湖,实现Spark/GPU算子混合编排,数据从ETL到训练Tensor化零拷贝传输; - 设计DPU加速层,将哈希计算、特征编码等操作卸载至智能网卡,释放CPU/GPU算力。 - 多模态处理优化 - 文本/视频数据采用GPU流水线预处理,利用NVIDIA RAPIDS加速特征提取; - Embedding数据通过量化感知训练(QAT) 减少显存占用,支持FP16/INT8混合精度计算。 (3)数据质量与DCAI自动化链路 - 质量评估体系 - 定义多维度指标:时空一致性(行为时序异常检测)、模态对齐度(图文匹配校验)、噪声容忍阈值(基于模型鲁棒性反推)。 - 自动化优化工具 - 开发强化学习代理,根据模型反馈自动选择数据清洗策略(如GAN-based数据增强 vs. 规则过滤); - 构建因果推理模块,定位数据分布偏移对模型AUC下降的贡献度,生成根因分析报告。 (4)开发者生态与效能提升 - Python原生接口 - 提供声明式数据处理DSL,支持通过Python装饰器定义GPU加速算子(如@gpu_map); - 集成Jupyter可视化工具,实时展示数据质量热力图与模型性能关联分析。 - 效能监控体系 - 建立资源-质量-效果三维监控看板,跟踪存储成本、数据处理吞吐量、模型AUC等核心指标。

更新于 2025-05-19上海