理想汽车智能车控软件架构师
社招全职8年以上智能与信息技术地点:北京状态:招聘
任职要求
任职要求: Ø 在智能算法架构设计,开发,集成,部署领域有8年以上工作经历,有产品量产开发经验 Ø 熟悉至少一种主流深度学习算法开发框架(TensorFlow, PyTorch)和性能调优 Ø 熟练掌握模型部署时的压缩技巧(模型剪枝、量化和蒸馏等) Ø 熟悉AI编译器相关技术,至少熟悉一种片上的主流算力芯片的编译(地平线,昇腾等)和性能调优 Ø 熟悉 ARM 体系架构,熟悉DSP, GPU, NPU等硬件加速器的特性和性能调优 Ø 熟悉至少一种并行计算编程框架(OpenCL,CUDA)和性能调优者 Ø 熟悉智能软件全开发环节,有平台化软件架构的设计能力和成功经历 Ø 可以根据智能化功能需求,完成功能部署分配和资源消耗的预估 Ø 善于沟通,有良好的逻辑表达能力,团队协作精神良好
工作职责
工作职责: Ø 负责智能车控(智能能源,智能底盘,智能环境等)功能的平台化软件架构设计和落地实施 - 支持不同硬件加速器和智能化算法的平台化开发框架设计 - 结合不同硬件架构,深度学习框架和AI编译等相关技术,加速智能车控算法的推理,部署的落地 Ø 负责智能化软件性能和资源使用的优化方案制定和落地实施 Ø 负责根据实际业务情况制定智能化软件开发和分工流程 Ø 负责分析智能功能对芯片资源的需求,支撑控制器芯片选型
包括英文材料
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
系统设计+
https://roadmap.sh/system-design
Everything you need to know about designing large scale systems.
https://www.youtube.com/watch?v=F2FmTdLtb_4
This complete system design tutorial covers scalability, reliability, data handling, and high-level architecture with clear explanations, real-world examples, and practical strategies.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
开发框架+
[英文] Understanding Modern Development Frameworks: A Guide for Developers and Technical Decision-makers
https://www.freecodecamp.org/news/understanding-modern-development-frameworks-guide-for-devs/
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
性能调优+
https://goperf.dev/
The Go App Optimization Guide is a series of in-depth, technical articles for developers who want to get more performance out of their Go code without relying on guesswork or cargo cult patterns.
https://web.dev/learn/performance
This course is designed for those new to web performance, a vital aspect of the user experience.
https://www.ibm.com/think/insights/application-performance-optimization
Application performance is not just a simple concern for most organizations; it’s a critical factor in their business’s success.
https://www.oreilly.com/library/view/optimizing-java/9781492039259/
Performance tuning is an experimental science, but that doesn’t mean engineers should resort to guesswork and folklore to get the job done.
OpenCL+
https://developer.nvidia.com/opencl
OpenCL™ (Open Computing Language) is a low-level API for heterogeneous computing that runs on CUDA-powered GPUs.
https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod20OpenCL/3rd-Edition-AppendixA-intro-to-OpenCL.pdf
we will give a brief overview of OpenCL for CUDA programers.
[英文] Hands On OpenCL
https://handsonopencl.github.io/
An open source two-day lecture course for teaching and learning OpenCL
https://leonardoaraujosantos.gitbook.io/opencl/chapter1
Open Computing Language is a framework for writing programs that execute across heterogeneous platforms.
https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/opencl/
OpenCL came as a standard for heterogeneous programming that enables a code to run in different platforms.
https://www.youtube.com/watch?v=4q9fPOI-x80
This presentation will show how to make use of the GPU from Java using OpenCL.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
相关职位
社招8年以上智能与信息技术
我们正在寻找一位经验丰富的车控操作系统软件架构师,加入我们的“星环OS”核心开发团队。您将作为技术引领者,主导“星环OS-车控系统”工具链与SDK的架构设计与技术演进,优化车控软件的研发流程,提升系统的灵活性、可扩展性与生态友好度,为上层智能控制业务应用提供稳定、高效、易用的软件基座与高效工具链,是实现“软件定义汽车”战略的关键岗位。 职责描述: 1. 负责“星环OS-车控系统”的工具链架构设计,覆盖应用开发、编译、调试到部署全流程的软件工具链。 2. 主导软件开发套件(SDK)的规划与设计,定义清晰、稳定且对开发者友好的API体系。 3. 撰写核心架构与接口的规范文档,并制定工具链与SDK的长期技术演进路线图。 4. 深入到开发测试的各个阶段,与开发团队一同协作实现目标,确保技术方案高质量落地。
社招10年以上智能与信息技术
1. 洞察车端智驾、车控业务演进,支撑自研芯片的软硬联合设计优化,保障支撑芯片设计的优越性。 2. 持续洞察AI算法和工程技术发展动态,支撑车端OS与AI技术融合演进,建设业界领先的AI OS生态,提升核心技术竞争力。 3. 完成OS底层技术创新设计与挖掘,并指导开发团队完成关键技术项目规划、设计与落地验证工作,确保技术可行性并实现价值目标。 4. 负责OS系统核心功能迭代演进的架构设计工作,支撑质量持续改进、性能和实时性优化提升、安全性能力增强、AI能力融合优化等,推动综合产品力逐步提升。