小鹏汽车大数据后端开发工程师 - 平台方向
社招全职地点:广州状态:招聘
任职要求
1. 本科及以上学历,计算机类相关专业,有不错的后端开发经验; 2. 优秀的编程和调试能力,精通至少一种主流编程语言, 如Java,Python,Go; 3. 熟悉大数据生态环境,掌握Hadoop,Hive,Kafka,Spark,Flink,Redis,ElasticSearch等大数据技术栈; 4. 对实时框驾有深入了解,在生产环境有TB级别Flink实时计算系统开发经验,深入掌握Flink DataStream、FlinkSQL、Flink Checkpoint、Flink State等模块,有Flink源码阅读经验优先; 5. 熟练使用MySQL/PostgreSQL/Redis/Kafka/Elasticsearch等常用存储技术,并熟悉其使用方式和实现原理; 6. 熟练使用doris/clickhouse/…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
团队介绍: 小鹏汽车自动驾驶的大数据方向,负责所有自动驾驶数据的云端处理,为自动驾驶业务提供高性能,高质量的数据加工,保证整个数据生产的稳定性,及时性,高可用。 1. 负责自动驾驶大数据多模态(如视频、图像、雷达信号等)湖仓平台的架构设计、开发与建设,包括数据处理、资源调度、算子管理、部署服务等;负责数据采集、清洗、转换和加载(ETL)流程的开发,处理多源异构数据 2. 基于大数据多模态湖仓平台,协助客户处理生产业务中的海量数据,解决疑难问题,支持百亿级自动驾驶感知和全栈数据的快速定位和分析,赋能上层业务发展。 3. 协助设计和优化数据仓库模型,参与数据治理工作(如数据质量核查、元数据管理等) 4. 负责自动驾驶离线和实时数据仓库的构建和性能优化;负责车端信号数据仓库体系和数据指标体系的架构设计与开发,为算法和数据闭环提供框架支持; 5. 调优分布式计算引擎(Spark/Flink/Presto)及存储系统(HDFS/OSS),构建OLAP引擎(Doris/StarRocks),解决海量数据场景下的资源瓶颈。 6. 跟踪Iceberg、Paimon、Flink、Spark、Lance等开源技术演进,主导关键组件二次开发或源码级优化;负责前沿技术的跟踪研究,工具链的选型测试,解决、攻克数据平台的核心技术难题。 7. 建立监控和反馈指标,持续优化改进产品的架构及性能,保证PB级数仓的数据质量和平台稳定性。
包括英文材料
学历+
后端开发+
https://www.youtube.com/watch?v=tN6oJu2DqCM&list=PLWKjhJtqVAbn21gs5UnLhCQ82f923WCgM
Learn what technologies you should learn first to become a back end web developer.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Go+
https://www.youtube.com/watch?v=8uiZC0l4Ajw
学习Golang的完整教程!从开始到结束不到一个小时,包括如何在Go中构建API的完整演示。没有多余的内容,只有你需要知道的知识。
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Kafka+
https://developer.confluent.io/what-is-apache-kafka/
https://www.youtube.com/watch?v=CU44hKLMg7k
https://www.youtube.com/watch?v=j4bqyAMMb7o&list=PLa7VYi0yPIH0KbnJQcMv5N9iW8HkZHztH
In this Apache Kafka fundamentals course, we introduce you to the basic Apache Kafka elements and APIs, as well as the broader Kafka ecosystem.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
Redis+
[英文] Developer Hub
https://redis.io/dev/
Get all the tutorials, learning paths, and more you need to start building—fast.
https://www.runoob.com/redis/redis-tutorial.html
REmote DIctionary Server(Redis) 是一个由 Salvatore Sanfilippo 写的 key-value 存储系统,是跨平台的非关系型数据库。
https://www.youtube.com/watch?v=jgpVdJB2sKQ
In this video I will be covering Redis in depth from how to install it, what commands you can use, all the way to how to use it in a real world project.
ElasticSearch+
https://www.youtube.com/watch?v=a4HBKEda_F8
Learn about Elasticsearch with this comprehensive course designed for beginners, featuring both theoretical concepts and hands-on applications using Python (though applicable to any programming language). The course is structured in two parts: first covering essential Elasticsearch fundamentals including index management, document storage, text analysis, pipeline creation, search functionality, and advanced features like semantic search and embeddings; followed by a practical section where you'll build a real-world website using Elasticsearch as a search engine, working with the Astronomy Picture of the Day (APOD) dataset to implement features such as data cleaning pipelines, tokenization, pagination, and aggregations.
还有更多 •••
相关职位
社招3年以上A43408
1、负责设计、开发数据平台与后端服务的架构,确保系统在高并发、大数据场景下具备良好的可用性、高性能及扩展性,满足业务增长需求; 2、设计数据库规划存储方案,实现高效存储与快速检索,搭建后端服务,实现业务逻辑; 3、遵循微服务架构,拆分业务为独立模块,优化系统;协同前端团队,定义、维护API接口,保障数据交互流畅,提升用户体验。
更新于 2025-06-23北京
社招JMT32
1、负责字节跳动数据平台-流量平台后端开发和架构设计工作,支持公司二十万埋点和每日万亿数据处理; 2、负责数据产品架构设计和后端开发,设计和实现后端和关键数据服务; 3、负责数据产品的功能迭代和性能优化,提高效率,优化流程; 4、保障技术系统稳定可靠,熟练运用合适技术对复杂场景做出合理技术设计,保障和提升海量数据平台相关系统的性能和稳定性。
更新于 2021-08-24北京
校招研发技术类
1. 负责互联网基础架构(大数据、运维、安全等)相关效能平台的设计和开发工作,面向AI原生时代的基建效能平台开发,通过大模型技术重构传统运维、数据、安全体系,打造具备自进化能力的智能基础设施中台; 2. 智能平台开发:基于大模型开发AIOps工具,实现日志分析/故障预测自动化;构建Prompt工程框架,优化LLM在运维场景的落地效率; 3. DataOps体系建设:搭建自动化数据流水线,集成质量监控与版本控制功能;开发DataAgent实现自然语言交互式数据查询; 4. 安全架构优化:设计AI驱动的威胁感知系统,实现攻击模式预测;开发敏感数据自动识别与合规审计工具; 5. 云原生运维:优化K8s资源调度算法与智能扩缩容策略。
更新于 2025-11-18深圳