小鹏汽车传感器开发实习生
实习兼职地点:深圳状态:招聘
任职要求
1. 硕士及以上学历,精密仪器、光学工程、计算机科学、机器人等相关专业。 2. 精通视觉传感器(RGB/深度相机)、触觉传感器、RTK、IMU等传感器原理及应用。 3. 熟练使用光学设计软件(ZEMAX/TracePro)、机械设计工具(CATIA/SolidWorks)及其他传感器仿真设计工具。 4. 熟练使用编程语言(Python/C++/MATLAB),具备基础算法开发和仿真验证能力。 5. 熟悉传感器信号处理技术(数字滤波/噪声抑制/标定补偿)及多传感器融合方法(卡尔曼滤波/粒子滤波/深度学习融合)。 6. 熟悉嵌入式开发,包括传感器接口(I2C/SPI/CAN/MIPI/GMSL2)、嵌入式开发及算法协同设计。 7. 熟悉计算机视觉技术(目标检测/物体跟踪)及机器学习在传感器数据中的应用。 8. 具备优秀的跨团队协作能力,能协调硬件与算法团队解决问题。 9. 较强的项目推动力,确保开发按时保质交付。 优先条件: 1. 具备机器人、自动驾驶等领域传感器开发经验,熟悉SLAM、目标检测、标定算法、数据后融合处理等算法。 2. 掌握PyTorch/TensorFlow框架,有AI模型在传感器优化中的落地经验。
工作职责
职位概述: 我们寻找一位智能传感器开发工程师/专家,为机器人在复杂环境(如导航、抓取操作、人机交互)中设计创新的感知方案。负责多传感器(视觉、触觉、IMU、RTK等)与算法的深度融合,开发高可靠性感知系统,并推动机器人平台的落地应用。该职位需兼具硬件设计、算法优化及工程实现能力。 1. 传感器系统方案设计:分析机器人需求,定义传感功能及技术指标,完成关键技术预研与可行性评估。 2. 传感器设计与优化:主导视觉、雷达、触觉等传感器的仿真设计、选型及性能优化。 3. 系统验证与交付:制定硬件与算法测试方案,验证仿真/真实场景性能,确保产品交付。 4. 软硬件协同优化:集成传感器与算法,提升系统在动态环境中的实时性与稳定性。 5. 多传感器融合算法开发:设计并优化视觉/IMU/触觉等数据融合算法,增强环境感知能力。 6. 跨团队协作:与算法、硬件、系统团队协同,确保传感器与机器人平台无缝对接。 7. 前沿技术探索:研究新型传感器技术及机器学习模型,推动感知系统创新。
包括英文材料
学历+
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
MATLAB+
https://matlabacademy.mathworks.com/?page=1&sort=featured
Learn MATLAB and Simulink through interactive, in-product exercises
https://www.mathworks.com/help/matlab/getting-started-with-matlab.html
Millions of engineers and scientists worldwide use MATLAB® to analyze and design the systems and products transforming our world.
https://www.youtube.com/watch?v=7f50sQYjNRA
Learn the fundametnals of MATLAB in this tutorial for engineers, scientists, and students.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
SLAM+
https://docs.mrpt.org/reference/latest/tutorial-slam-for-beginners-the-basics.html
[英文] SLAM for Dummies
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf
A Tutorial Approach to Simultaneous Localization and Mapping
https://ouster.com/insights/blog/introduction-to-slam-simultaneous-localization-and-mapping
SLAM is an essential piece in robotics that helps robots to estimate their pose – the position and orientation – on the map while creating the map of the environment to carry out autonomous activities.
[英文] What Is SLAM?
https://www.mathworks.com/discovery/slam.html
How it works, types of SLAM algorithms, and getting started
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
相关职位
实习A191284A
日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、GenMedia、AI for Science、机器人等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责触觉传感器制备工艺的开发、实践和测试; 2、负责触觉传感器结构设计、方案设计和探索; 3、负责触觉传感器标定算法开发。
更新于 2025-08-08
实习A157869
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:字节跳动ByteDance Research专注于人工智能领域的前沿技术研究,涵盖了机器翻译、视频理解基础模型、机器人研究、机器学习公平性、量子化学、AI 制药、分子动力学等多技术研究领域,同时致力于将研究成果落地,为公司现有的产品和业务提供核心技术支持和服务。 1、与算法/工程团队深入合作,负责算法与系统侧的日常需求测试和质量保障工作; 2、参与算法及工程质量保障专项的设计及开发,如自动化测试、算法评测、传感器SDK二次开发等; 3、分析、解决产品研发过程中出现的相关问题。
更新于 2025-02-18