蚂蚁金服蚂蚁集团-数据技术专家-芝麻信用
社招全职2年以上技术类-数据地点:杭州状态:招聘
任职要求
1、拥有计算机科学、机器学习、统计学、数学、运筹学、计量经济学等学科的本科或以上学历(优先),有统计推断、统计建模、随机实验设计相关理论基础。 2、熟练掌握SQL和Python,熟悉常用的机器学习和深度学习模型,如K-means、BERT、GBDT,运用数据挖掘、算法模型、因果推断解决业务问题,两年以上工作经验。 3、能够串联不同领域知识解决实际问题,具备良好的沟通能力和跨团队合作能力。 4、优先考虑在因果推断、NLP算法和大模型领域有专长或相关经验: ● 熟悉因果推断的常用框架(POF、SCM)和相关方法,如元学习、树模型、表征学习等; ● 或熟悉NLP领域常用的开源框架和工具,如文本聚类、word2vec、实体识别、词根抽取等; ● 或对NLP主流大模型如GPT3/chatGPT/T5/PaLM/LLaMA/GLM等的原理和差异有基本理解,有生成式模型,语言大模型相关经验者。 5、具备工程实现能力,有大数据计算框架处理经验优先。
工作职责
1、负责洞察和分析海量数据,深入理解商家和用户需求,构建生命周期,衡量长短期价值,科学指导产品和业务的增长策略;协同运营、产品、工程等,探索增长机会,共同推动业务模式和产品不断创新。 2、负责精细化分析商家行为,构建商家画像和商家标签体系,通过因果推断、动线挖掘、模型预测等方法,精细化理解经营需求,优化产品功能和用户体验。 3、负责通过AB实验设计、因果推断、深度学习等手段,量化运营策略效果和价值,科学评估运营手段,为业务决策提效。 4、通过对商家行为、商家供给及核心场景的理解,建设商家经营知识库,结合大模型,构建语义化、自动化的商家助手能力。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
学历+
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
BERT+
https://www.youtube.com/watch?v=xI0HHN5XKDo
Understand the BERT Transformer in and out.
GBDT+
https://developers.google.com/machine-learning/decision-forests/intro-to-gbdt
Like bagging and boosting, gradient boosting is a methodology applied on top of another machine learning algorithm.
https://scikit-learn.org/stable/modules/ensemble.html
Ensemble methods combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
因果推断+
https://web.stanford.edu/~swager/causal_inf_book.pdf
How best to understand and characterize causality is an age-old question in philosophy.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
相关职位
社招技术类-质量保证
1.业务质量保障:负责芝麻信用场景的质量体系建设工作,包括信用/回收/租赁业务的全链路风险保障。深入理解业务逻辑和系统架构,设计并执行高效的质量策略和保障方案,确保业务功能的正确性、稳定性和用户体验,守护芝麻信用的核心价值; 2.搜推效果评测:负责构建和落地搜索/推荐效果评估体系,具备评测集构建、评测分析、问题归因的能力,根据业务场景选取合适的指标,挖掘badcase并给出优化建议,驱动迭代,提升用户满意度和业务目标达成; 3.大模型评测:负责构建和落地大语言模型(LLM)的评测能力,通过科学高效的评估手段,确保商家端和用户端智能助理在核心任务中的能力可靠性、用户体验和商业价值,为LLM迭代提供关键决策依据,驱动AI技术在信用领域的可信、高效落地。
更新于 2025-07-11
社招技术类-开发
1. 营销循环经济租赁回收阵地C端玩法架构设计与实现,在快速迭代中沉淀抽象以提升研发效率,支撑大促活动,解决高复杂度活动技术课题,协同上下游落地跨团队项目,并保障项目稳定; 2. 围绕租赁行业,通过交易、资金、风控能力,快速迭代,用数据、技术、架构驱动业务效果提升,根据行业特性和客户痛点,快速推演构建面向行业的解决方案落地,帮助业务商业化; 3. 承担系统迭代优化任务,提升业务扩展性、系统稳定性、响应性能等。
更新于 2025-07-21
社招3年以上技术类-开发
1、负责信用相关系统(用户技术/信用支付/信用风控三个方面)的系统架构设计和开发工作,提供复杂系统的设计支持,推动业务DAU和DAP规模化增长; 2、推动信用服务场景化基建落地,通过数字化的方式助力信用服务场景的创新及使用规模的增长; 3、支撑服务亿级用户的高可用应用,包含面向电商大促、活动秒杀等高并发流量场景; 4、负责芝麻分、信用风控等平台能力建设,推动信用域的专有技术课题突破。
更新于 2025-08-07