蚂蚁金服蚂蚁集团-测试开发(业务质量)-数字医疗
任职要求
1、计算机、信息、人工智能、数据等相关专业本科及以上学历,有丰富的大型软件项目经验; 2、具备扎实的计算机基础知识,熟练掌握至少一种主流编程语言,能独立设计并完成测试工具或测框开发要求; 3、熟悉各种测试技术,能通过测试技术提升效率;熟知互联网特有的领域知识和测试方法论;关注国内外软件测试的行业动态和发展历程,具备一定的前瞻性视角; 4、优秀的沟通和团队合作能力,能从整个研发的角度出发,对研发流程和研发效率的改善提出落地方案,能够在复杂的局面下带领团队分阶段拿到最佳结果; 5、具备大型和复杂技术架构和平台的质量保障经验,并有相应的质量保障策略和质量技术实践者优先; 6、有医疗业务经验者优先,有用户增长、营销算法、搜索、推荐、广告、支付等领域经验者优先。
工作职责
团队介绍 支付宝医疗质量技术团队,负责解决能力建设、项目交付到产品运营过程的技术风险和交付效率问题,支撑医疗业务目标顺利达成。 职位描述 1、负责医疗业务域的工程质量。以缺陷、线上问题、故障体系牵引技术风险改进,防止功能问题、稳定性风险、资金安全风险等导致交付失败或业务流失。 2、工作内容包括不限于质量工具开发、测试回归体系、变更管控验证、线上监控应急、风险分析挖掘等,推动架构、技术、工具和流程的改进和创新,在保障技术风险底盘的基础上,提升整体研发和交付的效率; 3、在技术架构、工具平台、团队技能和人员等方面进行有前瞻性的布局、规划和建设,构建高品质的稳定性保障能力,有质量技术方向的创新。
1、负责支付宝的个性化AI产品体验以及基于最新的大模型等AI技术构造下一代的智能化产品的质量保障工作,确保在医疗场景中的应用效果和安全; 2、工作内容包括不限于 持续集成体系、质量平台开发、专业领域模型训练、算法评测、线上问题归因分析等,推动架构、技术、工具和流程的改进和创新,多工种配合,提升整体研发和交付的效率; 3、在算法工程架构、质量平台、团队技能和人员等方面进行有前瞻性的布局、规划和建设,构建高品质的稳定性保障能力,有质量技术方向的创新。
团队介绍:AI Coding团队致力于探索LLM在软件开发全生命周期的应用,支持MarsCode、Trae等代码智能产品中代码补全、智能编辑、程序debug以及代码修复等核心AI功能的全链路模型优化。欢迎对大模型、Agent技术和开发者工具体系感兴趣、对技术有追求的同学加入,共同成长! 课题介绍: 一、课题背景与研究动机 1、复杂软件工程项目的挑战与需求:随着企业业务需求的快速增长,软件项目规模持续扩大,系统架构日趋复杂,跨语言、多框架、多平台开发成为常态。开发团队在应对代码理解、跨模块协作、版本演化和长期维护等问题时,效率与质量面临双重挑战; 2、大模型在编程领域的潜力与不足:大规模语言模型在代码生成、补全和文档生成等任务上已展现强大能力,推动了智能化开发工具的初步落地。然而,在应对复杂软件工程项目时,现有模型在长序列建模、上下文一致性、跨文件依赖理解及代码质量保障方面仍有明显不足; 3、技术与产业机遇:1)范式变革:大模型有望成为软件开发全流程的重要参与者,推动从工具辅助向智能协作转变,覆盖从需求分析到代码实现、测试生成和自动化重构的各个环节;2)行业转型:通过深度优化大模型在复杂软件开发中的能力,可显著提升企业研发效率、软件质量与团队协作能力,助力数字化转型; 二、研究目标与创新价值 1、研究目标 1)提升大模型对复杂项目的语义理解与跨模块上下文建模能力,尤其是在长序列代码、跨文件依赖和复杂逻辑推理场景中的表现; 2)优化模型微调与自适应学习策略,通过引入多任务学习、强化学习(RL)和领域知识增强,构建具有高泛化能力和行业适配能力的大模型; 3)集成领域知识库与检索增强(RAG)技术,确保模型生成结果在行业标准、安全规范和合规性方面的准确性与可靠性; 4)构建自我进化的 AI Coding多智能体系统,基于强化学习、长期记忆、垂类模型训练、测试时计算等方法,持续优化任务规划、代码生成等能力,实现数据驱动的自我进化,从而实现复杂应用的端到端全栈开发; 2、创新价值 1)模型结构与预训练策略的突破:在通用预训练模型基础上,结合程序分析与语法语义建模,提升对大型软件项目的理解能力,尤其是在模块间交互和函数调用路径分析方面; 2)模型优化与自适应增强:通过多维度监督信号(代码质量、运行性能、测试覆盖率等),实现强化学习与在线反馈的动态调整,打造具备持续学习能力的大模型; 3)从工具辅助到全生命周期协作:以大模型为核心,推动需求到实现、测试到部署的智能化协作新范式,助力开发者在复杂工程项目中更高效地完成跨团队协作与长期维护; 4)领域知识与行业专属能力融入:通过引入行业领域知识库(如金融合规、医疗数据安全规范等),结合检索增强技术(RAG),确保生成代码符合行业标准,显著降低错误和安全隐患; 三、主要挑战与应用前景 1、长序列代码与复杂上下文建模:复杂软件项目中,代码文件可能达到数千行,存在跨模块调用和多层次依赖,模型如何在长序列输入下保持上下文一致性,是核心技术难点之一; 2、跨语言与多框架适配:现有模型大多针对单一语言优化,而企业项目往往涉及多语言(如 Python、C++、Java 等)和多框架(如 React、Django、Kubernetes)。如何提升模型的跨语言泛化能力成为重要课题; 3、领域知识缺失与安全合规风险:通用大模型缺乏行业特定知识,可能生成不符合行业规范或存在潜在漏洞的代码,需引入领域知识与合规规则进行优化和增强; 4、人机协作:针对新涌现的大模型技术和应用场景,研究下一代软件研发人机交互形式,推动AI驱动的交互形式的普及与发展。
团队介绍:AI Coding团队致力于探索LLM在软件开发全生命周期的应用,支持MarsCode、Trae等代码智能产品中代码补全、智能编辑、程序debug以及代码修复等核心AI功能的全链路模型优化。欢迎对大模型、Agent技术和开发者工具体系感兴趣、对技术有追求的同学加入,共同成长! 课题介绍: 一、课题背景与研究动机 1、复杂软件工程项目的挑战与需求:随着企业业务需求的快速增长,软件项目规模持续扩大,系统架构日趋复杂,跨语言、多框架、多平台开发成为常态。开发团队在应对代码理解、跨模块协作、版本演化和长期维护等问题时,效率与质量面临双重挑战; 2、大模型在编程领域的潜力与不足:大规模语言模型在代码生成、补全和文档生成等任务上已展现强大能力,推动了智能化开发工具的初步落地。然而,在应对复杂软件工程项目时,现有模型在长序列建模、上下文一致性、跨文件依赖理解及代码质量保障方面仍有明显不足; 3、技术与产业机遇:1)范式变革:大模型有望成为软件开发全流程的重要参与者,推动从工具辅助向智能协作转变,覆盖从需求分析到代码实现、测试生成和自动化重构的各个环节;2)行业转型:通过深度优化大模型在复杂软件开发中的能力,可显著提升企业研发效率、软件质量与团队协作能力,助力数字化转型; 二、研究目标与创新价值 1、研究目标 1)提升大模型对复杂项目的语义理解与跨模块上下文建模能力,尤其是在长序列代码、跨文件依赖和复杂逻辑推理场景中的表现; 2)优化模型微调与自适应学习策略,通过引入多任务学习、强化学习(RL)和领域知识增强,构建具有高泛化能力和行业适配能力的大模型; 3)集成领域知识库与检索增强(RAG)技术,确保模型生成结果在行业标准、安全规范和合规性方面的准确性与可靠性; 4)构建自我进化的 AI Coding多智能体系统,基于强化学习、长期记忆、垂类模型训练、测试时计算等方法,持续优化任务规划、代码生成等能力,实现数据驱动的自我进化,从而实现复杂应用的端到端全栈开发; 2、创新价值 1)模型结构与预训练策略的突破:在通用预训练模型基础上,结合程序分析与语法语义建模,提升对大型软件项目的理解能力,尤其是在模块间交互和函数调用路径分析方面; 2)模型优化与自适应增强:通过多维度监督信号(代码质量、运行性能、测试覆盖率等),实现强化学习与在线反馈的动态调整,打造具备持续学习能力的大模型; 3)从工具辅助到全生命周期协作:以大模型为核心,推动需求到实现、测试到部署的智能化协作新范式,助力开发者在复杂工程项目中更高效地完成跨团队协作与长期维护; 4)领域知识与行业专属能力融入:通过引入行业领域知识库(如金融合规、医疗数据安全规范等),结合检索增强技术(RAG),确保生成代码符合行业标准,显著降低错误和安全隐患; 三、主要挑战与应用前景 1、长序列代码与复杂上下文建模:复杂软件项目中,代码文件可能达到数千行,存在跨模块调用和多层次依赖,模型如何在长序列输入下保持上下文一致性,是核心技术难点之一; 2、跨语言与多框架适配:现有模型大多针对单一语言优化,而企业项目往往涉及多语言(如 Python、C++、Java 等)和多框架(如 React、Django、Kubernetes)。如何提升模型的跨语言泛化能力成为重要课题; 3、领域知识缺失与安全合规风险:通用大模型缺乏行业特定知识,可能生成不符合行业规范或存在潜在漏洞的代码,需引入领域知识与合规规则进行优化和增强; 4、人机协作:针对新涌现的大模型技术和应用场景,研究下一代软件研发人机交互形式,推动AI驱动的交互形式的普及与发展。
团队介绍:AI Coding团队致力于探索LLM在软件开发全生命周期的应用,支持MarsCode、Trae等代码智能产品中代码补全、智能编辑、程序debug以及代码修复等核心AI功能的全链路模型优化。欢迎对大模型、Agent技术和开发者工具体系感兴趣、对技术有追求的同学加入,共同成长! 课题介绍: 一、课题背景与研究动机 1、复杂软件工程项目的挑战与需求:随着企业业务需求的快速增长,软件项目规模持续扩大,系统架构日趋复杂,跨语言、多框架、多平台开发成为常态。开发团队在应对代码理解、跨模块协作、版本演化和长期维护等问题时,效率与质量面临双重挑战; 2、大模型在编程领域的潜力与不足:大规模语言模型在代码生成、补全和文档生成等任务上已展现强大能力,推动了智能化开发工具的初步落地。然而,在应对复杂软件工程项目时,现有模型在长序列建模、上下文一致性、跨文件依赖理解及代码质量保障方面仍有明显不足; 3、技术与产业机遇:1)范式变革:大模型有望成为软件开发全流程的重要参与者,推动从工具辅助向智能协作转变,覆盖从需求分析到代码实现、测试生成和自动化重构的各个环节;2)行业转型:通过深度优化大模型在复杂软件开发中的能力,可显著提升企业研发效率、软件质量与团队协作能力,助力数字化转型; 二、研究目标与创新价值 1、研究目标 1)提升大模型对复杂项目的语义理解与跨模块上下文建模能力,尤其是在长序列代码、跨文件依赖和复杂逻辑推理场景中的表现; 2)优化模型微调与自适应学习策略,通过引入多任务学习、强化学习(RL)和领域知识增强,构建具有高泛化能力和行业适配能力的大模型; 3)集成领域知识库与检索增强(RAG)技术,确保模型生成结果在行业标准、安全规范和合规性方面的准确性与可靠性; 4)构建自我进化的 AI Coding多智能体系统,基于强化学习、长期记忆、垂类模型训练、测试时计算等方法,持续优化任务规划、代码生成等能力,实现数据驱动的自我进化,从而实现复杂应用的端到端全栈开发; 2、创新价值 1)模型结构与预训练策略的突破:在通用预训练模型基础上,结合程序分析与语法语义建模,提升对大型软件项目的理解能力,尤其是在模块间交互和函数调用路径分析方面; 2)模型优化与自适应增强:通过多维度监督信号(代码质量、运行性能、测试覆盖率等),实现强化学习与在线反馈的动态调整,打造具备持续学习能力的大模型; 3)从工具辅助到全生命周期协作:以大模型为核心,推动需求到实现、测试到部署的智能化协作新范式,助力开发者在复杂工程项目中更高效地完成跨团队协作与长期维护; 4)领域知识与行业专属能力融入:通过引入行业领域知识库(如金融合规、医疗数据安全规范等),结合检索增强技术(RAG),确保生成代码符合行业标准,显著降低错误和安全隐患; 三、主要挑战与应用前景 1、长序列代码与复杂上下文建模:复杂软件项目中,代码文件可能达到数千行,存在跨模块调用和多层次依赖,模型如何在长序列输入下保持上下文一致性,是核心技术难点之一; 2、跨语言与多框架适配:现有模型大多针对单一语言优化,而企业项目往往涉及多语言(如 Python、C++、Java 等)和多框架(如 React、Django、Kubernetes)。如何提升模型的跨语言泛化能力成为重要课题; 3、领域知识缺失与安全合规风险:通用大模型缺乏行业特定知识,可能生成不符合行业规范或存在潜在漏洞的代码,需引入领域知识与合规规则进行优化和增强; 4、人机协作:针对新涌现的大模型技术和应用场景,研究下一代软件研发人机交互形式,推动AI驱动的交互形式的普及与发展。