蚂蚁金服研究型实习生-基于隐私计算MPC的国际场景跨国数据安全融合
任职要求
1.计算机科学、密码学、数学、统计学或相关领域的博士生,特别优秀的硕士生亦可; 2.熟悉至少1种密码学/隐私保护(包括但不限于公钥密码学,安全多方计算、同态加密、差分隐私、零知识证明、可信计算、联邦学习、后量子密码学等等)领域的技术,了解当前国内外业界在该领域的最新进展; 3.在AI或安全等领域的顶尖学术会议/期刊有相关论文发表者,以及相关竞赛获得优异成绩…
工作职责
研究领域: 隐私计算 项目简介: 在蚂蚁国际的各种在线业及离线务中,由于各国之间的法律法规差异、监管合规要求以及合作机构的意愿,国际业务数据常常面临区域间、机构间隔离的挑战,形成数据孤岛。外部合作机构/商户的数据不能出境、不愿出域。合作商户对数据保护意识强,撬动难度大。 为解决这些问题,我们希望在保证数据隐私的前提下,利用隐私计算MPC(Secure Multi-Party Computation)技术,进行联合计算和分析,确保数据在计算过程中不被泄露,实现跨区域、跨机构的数据协同。 1.负责密码学前沿技术跟踪和创新预研,进行隐私计算高性能、高精度、通用化方面的的基础研究; 2.负责将隐私计算技术应用于现实问题,面向场景优化的密码算法和系统; 3.跟踪、探索隐私计算方向前沿技术,并适时进行技术分享、专利申请和学术文章发表。 4.通过行业深度洞察以及前膽性思考,探索前沿技术、预研新场景,引导行业标准制定以及打造全球领先的行业品牌心智。
研究领域: 隐私计算 项目简介: 1.项目背景 在人工智能技术快速发展的今天,UIAgent(用户界面智能代理)正成为下一代人机交互的核心入口。然而,如何获得或构建海量多模态数据(如行为轨迹、界面标注信息、系统动线日志等)是研究的关键。但如何在保障数据隐私合规的前提下,完成高质量的场景重建与语料建模,已成为制约技术落地的关键瓶颈。本课题聚焦这一核心矛盾,探索隐私保护与数据效用之间的最优平衡,为UIAgent提供安全、合规、可用的基础数据支撑。 2.研究目标 本项目旨在构建一套全流程隐私保护框架,解决以下核心问题: 多源异构数据脱敏:针对文本、图像、时序行为等多模态数据,设计可组合的隐私擦除策略; 场景语义保真重建:在去除个人身份信息(PII)的同时,保留用户行为模式与系统交互逻辑的语义完整性; 隐私-效用博弈建模:通过理论分析与实验验证,量化隐私预算与模型性能间的权衡关系。 3.核心亮点 生成式隐私增强技术:基于扩散模型/VAE生成合成数据,既还原真实场景分布又规避隐私泄露风险; 行为轨迹知识蒸馏:将原始轨迹中的高敏感操作(如输入内容)抽象为低维符号序列,保留系统动线拓扑结构; 极致数据压缩技术:UIAgent的核心目标是理解和预测用户的界面交互行为,而非复现像素级视觉细节,将探索最小必要数据的边缘。
1. 探索基于大模型的语音双工交互系统关键技术,包括流式语音理解、增量文本生成、打断检测与恢复等; 2. 参与端侧轻量化语音大模型的研发,开展模型压缩(剪枝/量化/蒸馏)、硬件感知优化与高效推理引擎实现; 3. 参与设计并实现端云任务动态协同调度机制,基于网络状态、用户意图、隐私敏感度等多维上下文,智能分配计算负载,实现性能与隐私的最优平衡; 4. 参与构建支持跨端云一致性的多轮对话状态管理框架,确保长上下文语义连贯性与用户记忆的无缝衔接; 5. 参与建立面向真实场景的端云融合语音系统综合评估体系,从延迟、功耗、准确率、鲁棒性到隐私合规性等维度开展系统级测试与优化。