logo of antgroup

蚂蚁金服研究型实习生-安全域多模态大模型架构和效率优化

实习兼职研究型实习生地点:上海 | 杭州状态:招聘

任职要求


研究领域:
-目前正在攻读计算机科学或相关STEM领域的学士,硕士或博士学位
-具有一种或多种通用编程语言的经验,包括但不限于: Java,C/C ++ 、PythonJavaScriptGo
-具有上述研究领域的相关经验,包括行业经验或作为参与实验室研究
优先录用:
-对技术研究充满热情,具有产生新思想和创新的能力; 在自学,问题分析和解决方面表现出色
-在国际会议上或核心期刊发表一份或多份出版物或论文
-至少3个月的全职工作

工作职责


研究领域:
  人工智能
项目简介:
  课题1:音视频细粒度理解与token压缩,负责人:默宸,HC数:1个
随着大模型时代的到来,图文领域的视觉Token压缩技术为复杂场景下的视觉理解提供了全新的解决思路。这种技术不仅能够有效减少冗余信息,还能保留关键语义特征,从而显著提升图像的细粒度理解能力,同时满足高时效性任务的需求。基于此,我们希望能够开展基于query牵引与信息密度的Token压缩算法研究,针对视频内容的特点,设计高效的压缩与理解方案,以推动视频审核算法的性能优化与实际落地。
课题2:基于规则动态化Token交互的高效视频理解与推理模型研究,负责人:夜兰,HC数:1个
本研究方向旨在探索一种基于多规则联合推理的高效视频理解模型,以解决视频理解任务中效率与精度的平衡问题。通过规则先验引导的视觉Token联合抽取,结合视觉Token压缩技术,显著减少冗余信息并优化计算效率。模型引入动态规则-Token对应机制,实现规则与视觉信息的高效联合提取,同时结合多任务学习框架,支持多种规则的统一推断与协同处理。该方案能够在保持高精度的同时显著提升推理速度,适用于视频内容多规则审核、视频账号行为识别和场景分类等高时效性任务,为实际应用场景提供高效、细粒度的视频理解解决方案。
课题3:视频开集信息检测和定位,负责人:默宸,HC数:1个
随着视频内容生态的爆发式增长,传统闭集检测方法在面对业务快速迭代需求时面临显著挑战,难以泛化至开放场景下的新概念检测,且时空定位精度与效率难以平衡。本研究致力于构建视频开集信息检测框架,通过多模态语义对齐与时空注意力机制,实现对任意指定内容的视频检索(包含时空定位)。该技术将推动视频审核从定制化开发向通用化检测转型。
课题4:隐式深度推理与动态步骤压缩的协同优化架构研究,负责人:侯猫/亘郁,HC数:2个
现有大语言模型在复杂推理任务中面临根本性效率瓶颈:基于Transformer的注意力机制导致计算复杂度随上下文长度呈二次增长,KV缓存存储开销线性增加。传统显式推理方法(如Chain-of-Thought)通过生成冗长中间步骤提升精度,却加剧了计算资源消耗;而隐式推理虽能压缩计算步骤,但存在推理路径不可控、状态迭代深度不足等缺陷。因此希望从融合动态步骤压缩与隐式深度推理的角度出发,不仅实现动态剪枝冗余中间思考步骤,同时通过隐状态迭代实现深度计算扩展,从而达到在保持/提升推理精度的同时,将复杂任务的计算负载降低5,突破现有模型在长文本生成与多跳推理中的效率天花板。
包括英文材料
学历+
Java+
C+
Python+
JavaScript+
相关职位

logo of antgroup
实习研究型实习生

研究领域: 人工智能 项目简介: 【攻击】蚁鉴作为蚁天鉴大模型安全一体化解决方案的重要组成部份之一,聚焦于大语言模型潜在输出内容安全的主动挖掘和模型安全能力的量化评测。随着大模型的应用场景不断扩增,使用场景不断多样化,模态增加,agent组件增加,其暴露出来的潜在风险问题也随之扩大。我们希望通过建立一套自动化选件红队体系,挖掘更多的风险,研发更高攻击成功率的方法。从而更快,更全面地发现风险,评估风险,解决风险。当前评测遇到挑战: 1、如何批量的自动发现扫描未知的安全风险; 2、多模态agent 大模型安全评测方案设计; 3、如何对非API的复杂智能体(例如支小宝)进行评测; 4、大模型其他安全问题的研究,例如:能耗攻击,后门,可解释性等; 【防御】大模型对齐作为蚁天鉴安全护栏核心能力之一,对于不安全或者有攻击性的query,在response的价值观等安全性方面往往能表现出更加优秀的性能,在安全链路中发挥着及其重要的作用。 然而,内容安全大模型依然存在大模型的不足: 1. 与语言模型相比,多模内容安全大模型在内容的理解和生成存在许多跨域风险的理解与对齐问题。 2. 幻觉问题,对于一些低频知识依然存在幻觉,特别是在涉政场景,幻觉问题的影响会被放大。 3. 模型难以可控生成,对于一些紧急badcase修复和业务调整依然需要大量数据重新训练成本较高,无法进行及时高效地局部模型知识更新。 4. 推理模型安全性研究与防控。

logo of antgroup
实习研究型实习生

研究领域: 机器学习 项目简介: 当前网络攻击呈现高度组织化、智能化的特征,传统单点防御体系因缺乏动态协同能力,难以应对跨域渗透、APT攻击等复杂威胁。多Agent技术通过分布式智能体的自主感知与协同决策,可有效模拟攻击链行为、实现威胁闭环处置,但现有系统仍面临关键挑战:攻击场景动态演化导致任务分配失准,异构Agent间信任机制缺失引发协同效率下降,多源告警与流量日志等跨模态数据融合困难制约研判精度。本项目聚焦多Agent协同攻防的核心瓶颈,构建融合博弈论与联邦学习的动态任务调度模型,设计基于知识图谱的跨模态语义对齐机制,研发支持实时风险评估的协同决策引擎,为构建自适应、高鲁棒的新一代智能安全防御体系提供理论支撑与技术路径。

logo of antgroup
实习研究型实习生

研究领域: IoT 项目简介: 具身智能作为人工智能发展的新范式,通过物理实体(如机器人、无人系统等)直接与现实世界交互,其核心挑战在于融合AI与物理实体的安全可控性。当前系统涉及硬件设施、算法模型、数据系统等多维度复杂性,潜在攻击面包括传感器漏洞、多模块协同干扰、算法对抗攻击等。恶意攻击很可能引发具身智能体执行危险动作。传统安全防护难以应对物理域与信息域的双重威胁,目前不少厂家都在使用的开源项目Robot Operation System(机器人操作系统,简称ROS)最初以科研为目标场景,缺乏系统整体性安全设计。随着ROS的广泛应用,很多安全问题随之暴露,本项目希望对具身智能操作系统的安全性展开研究,提供系统性解决安全问题的方案。

logo of antgroup
实习研究型实习生

研究领域: 隐私计算 项目简介: 在蚂蚁国际的各种在线业及离线务中,由于各国之间的法律法规差异、监管合规要求以及合作机构的意愿,国际业务数据常常面临区域间、机构间隔离的挑战,形成数据孤岛。外部合作机构/商户的数据不能出境、不愿出域。合作商户对数据保护意识强,撬动难度大。 为解决这些问题,我们希望在保证数据隐私的前提下,利用隐私计算MPC(Secure Multi-Party Computation)技术,进行联合计算和分析,确保数据在计算过程中不被泄露,实现跨区域、跨机构的数据协同。 1.负责密码学前沿技术跟踪和创新预研,进行隐私计算高性能、高精度、通用化方面的的基础研究; 2.负责将隐私计算技术应用于现实问题,面向场景优化的密码算法和系统; 3.跟踪、探索隐私计算方向前沿技术,并适时进行技术分享、专利申请和学术文章发表。 4.通过行业深度洞察以及前膽性思考,探索前沿技术、预研新场景,引导行业标准制定以及打造全球领先的行业品牌心智。