蚂蚁金服蚂蚁集团-AI搜索算法工程师-杭州/北京
任职要求
1.熟悉常见训练框架和工具库,了解常见的强化学习训练策略 2.具备优秀的算法研发能力,对LLM领域前沿技术有热情,能够自驱地设计实验并完成算法技术的落地验证。 3、拥有良好的沟通表达能力和团队协作精神,具有强烈的责任心和使命感。 加分项: 1、有AI对话、搜索问答项目经验,包括不限于: 上下文理解、个性化问答等算法方向经验 2、有搜索、自然语言处理实战经验,包括不限于: Query理解、搜索相关性排序等 3、在相关领域顶级会议或期刊上发表过研究论文
工作职责
1、负责支付宝AI搜索产品相关的算法研发,方向包括:多轮上下文理解、知识规划、RAG知识增强、大模型可控生成等 2、参与LLM算法研发,包括LLM微调、偏好对齐等 3、负责算法落地支持业务需求迭代
面向AI内容创作场景,负责内容搜索与推荐系统的算法设计、优化及落地,通过精准的算法策略提升内容分发效率与用户体验,支撑AI生成内容(AIGC)、创作者生态等核心业务的增长。 岗位职责: 1.算法设计与优化:负责AI内容创作场景下推荐算法与搜索算法的研发迭代,包括但不限于召回、排序、过滤、个性化推荐等模块,优化内容匹配精准度与用户点击率、停留时长等核心指标。 2.数据驱动迭代:基于用户行为数据、内容特征数据等,构建算法评估体系,通过AB测试等方式验证算法效果,持续迭代优化推荐策略,解决冷启动、多样性不足等实际业务问题。 3.特征工程与模型搭建:参与内容特征、用户特征的挖掘与构建,结合场景需求选择或改进合适的推荐模型(如协同过滤、深度学习模型等),提升模型预测精度与泛化能力。 4.系统协同与落地:与工程、产品、数据等团队协作,将算法方案转化为可落地的技术实现,保障推荐系统的高可用性、低延迟与稳定性,适配AI内容创作场景的动态变化需求。 5.技术探索与沉淀:跟踪推荐算法、AI大模型在内容领域的应用动态,探索大模型与推荐系统结合的创新方向(如生成式推荐、意图理解增强等),沉淀算法研发经验与技术方案。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。
团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。 主要工作方向包括: 1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你; 4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新; 5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。