美团机器学习平台研发工程师
社招全职核心本地商业-基础研发平台地点:北京状态:招聘
任职要求
1.计算机基础知识良好,熟悉Java/Python/C++之一,对机器学习感兴趣; 2.对后台开发技术栈有深刻理解,有较强抽象能力,有大型系统开发经历; 2.具有主流深度学习引擎和大数据计算引擎(包括但不限于TensorFlow/PyTorch、Spark/Flink、Hudi/Iceberg等)的实际应用经验和原理了解,有引擎优化或平台化的经历; 4.有较强的技术好奇心和自驱力,了解行业最佳实践。 具备以下条件优先 1.参与过大型开源项目,尤其是在深度学习引擎或大数据引擎方面贡献过社区代码; 2.完整参与过企业级算法工程建设,有搜广推后端工程或特征/样本流建设经验,有平台化经历; 3.具有存储系统读写优化相关工作经验; 4.有GPU编程经验,参与过模型训练和推理服务,有深度学习任务性能/异常分析经验; 4.能以结果和价值为导向,利用科学的方法进行指标收集、统计、分析,从而进行成果的衡量。
工作职责
1.建设特征/样本工程,设计包括从特征打印到特征服务的完整实时+离线特征/样本生产流程,设计大规模分布式特征存储系统,支撑百亿级数据实时处理,提升特征/样本的生产效率、质量和访问性能,进而提升算法迭代效率和效果; 2.对算法开发过程进行抽象,将常用的机器学习、深度学习过程沉淀为组件,建设算法开发pipeline,设计代码与可视化组件相结合的编程范式,提供便捷稳固的一站式环境托管,提升算法迭代效率; 3.建设训练任务的托管能力,设计异构、多地域、多系统资源池、多租户分组的实验编排调度系统,建立模型实验效果评估体系,支撑几十个业务线、千级模型同时进行训练,保障模型及时产出,提升资源利用率,帮助业务优化模型效果; 4.探索云原生下的模型服务部署架构,设计高可用、多角色的模型服务框架,制定流量分发、模型/服务治理策略,支撑万亿级推理调用量,提升模型部署成功率、推理请求成功率和性能;
包括英文材料
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
相关职位
社招3-5年机器学习平台
1. 负责公司机器学习平台相关子系统的设计、开发和优化工作,打造易用、稳定、高效的机器学习平台。 2. 负责机器学习全流程的系统优化和迭代,包括:特征工程、工作流编排、资源调度、任务调度、模型管理、推理服务管理等。 3. 设计、开发超大规模机器学习系统,优化现有技术方案,改善系统性能, 提高算法的整体迭代效率。
更新于 2025-10-09
社招机器学习平台
【业务介绍】 作为公司统一的机器学习平台团队,负责调度公司所有模型训练与推理资源;基于自建的训推引擎,构建公司统一的机器学习平台,为公司所有算法同学(稀疏 & 稠密,含 LLM) 模型迭代提供端到端的一站式服务;包括 数据生产,模型训练,模型上线,特征管理,模型测试,资源管控等一系列能力。 【岗位职责】 1、负责小红书大规模机器学习平台的后台系统设计和开发工作; 2、将平台和框架结合,通过任务调度、弹性容灾、性能优化等措施端到端提升深度学习的训练效率,涉及k8s/kubeflow、网络通信、分布式训练等; 3、设计和构建 K8S 场景下的资源调度系统,参与底层GPU训练资源的调度优化与管理; 4、研究分析业内AI平台产品,优化技术方案,改进产品功能,完善产品体验。
社招A110401A
1、平台化产品后端开发,熟练掌握字节跳动业界领先的超大规模推荐系统全流程; 2、智能推荐重点业务支撑,统一平台化支持算法工程师进行推荐/广告等算法效果迭代; 3、性能优化,持续提升数据预处理/训练/预估性能; 4、易用性优化,持续提升平台易用性,降低机器学习应用门槛; 5、具体承担数据流与特征平台、训练平台、资源调度、离线架构、在线架构等其中一项或多项工作。
更新于 2024-10-17