美团大模型与智能体算法工程师/专家
任职要求
1. 计算机、人工智能、数学等相关专业硕士及以上学历,两年以上大模型、智能体或相关领域研发经验。 2. 具备扎实的大模型训练和调优背景,熟悉主流的大语言模型(Deepseek、Qwen、Llama等)及其他开源模型。 3. 精通至少一种深度学习框架(如TensorFlow, PyTorch),并具备良好的编程能力(Python, C++等)。 4. 具备良好的团队合作精神和沟通能力,能够与产品、工程团队高效协作。 具备以下条件优先 1. 有大模型预训练、指令微调、Agent模型、强化学习研究和实践经验 2. 有智能数据分析、深度推理、代码增强等方向实践经 3. 在NeurIPS/ICML/ICLR/ACL/EMNLP等会议或期刊上发表过论文或获得过国际或国内赛事奖项
工作职责
美团基础研发平台,作为公司的核心技术平台,致力于“零售+科技”的战略发展。我们专注于智能体构建、大模型推理、多模态训练等核心技术,并通过FRIDAY模型工厂与应用工厂,为业务提供稳定、安全、易扩展与技术先进的平台技术和技术能力。我们聚焦于大模型和智能体的前沿算法研究和应用落地,致力于将先进的人工智能技术转化为实际的业务价值。 我们真诚邀请你加入我们,共同推动技术发展,创造行业价值。 1. 负责基于大模型在业务场景下关键能力的应用研发,包括基于大模型的BI数据、商家助手、多智能体等; 2. 深入理解本地生活服务业务场景,研究并优化大模型推理、规划、代码等能力,推动相关技术在实际业务中的应用; 3. 研发和优化智能体、多智能协作,使其能够高效、准确地调用内部和外部工具,扩展智能体的应用边界; 4. 结合自主Agent的理念,探索和优化模型的能力边界,推动模型在复杂任务上的表现; 5. 跟进人工智能领域的新技术,探索前沿大模型技术方案和相关技术的验证,并撰写相论文和专利。
团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。
团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。
团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 1、数据挖掘:负责领域知识和训练数据的构建与维护,利用数据飞轮机制不断优化数据质量和丰富度,提升模型性能和应用效果; 2、大模型训练:针对业务需求进行大模型的继续训练(CT)、有监督微调(SFT)和强化学习,以及多模态模型训练,实现模型在垂直领域的深度适配,与业务专家合作,构建和优化结构化的提示词系统,利用COT等先进技术增强大模型的推理能力,高效、精准解决实际问题; 3、信息检索:开发和优化Query理解、语义索引、相关性排序等技术,提升RAG的效果,实现大模型与知识库的深度融合,基于领先的智能体框架,运用并增强大模型的推理、对话和反思能力,解决复杂业务问题; 4、大模型评测:制定和实施全方位的大模型评估方案,结合人工评估和自动化评估手段,建立完整的评测体系,确保模型性能的可靠性和稳定性; 5、用户增长:通过强化学习、用户增长等技术,优化对话策略,提高用户的平台使用体验和长期复购率,实现业务的可持续增长; 6、应用落地:深入理解业务痛点,定义问题解决方案,设定任务标准和目标,通过持续的技术创新和优化,实现最佳的业务效果和用户体验。