美团激励算法专家
社招全职3年以上核心本地商业-业务研发平台地点:北京状态:招聘
任职要求
1.数学、统计、运筹学、计算机或者相关专业硕士及以上学历,3年及以上工作经验 ; 2.在机器学习、深度学习、因果推断等方面有较为丰富的研发经验, 并能在多业务场景中进行合理的算法应用和部署; 3.熟悉使用Hive/Spark/Hadoop等大数据工具,熟悉TensorFlow/PyTorch等框架,有深度学习实际项目经验; 4.具有一定的业务敏感度,具有创新精神和理论结合实践的能力,有主动思考和学习的驱动力, 乐于与业务共同成就和成长; 5.优秀的分析问题、解决问题能力和团队合作意识,对挑战性问题充满激情。 具备以下条件优先 1.有过互联网广告、搜索、推荐、营销某一领域有工作经验者优先 2.有过短视频激励算法策略优化工作经验者优先
工作职责
1.参与美团视频智能激励补贴工作,运用因果推断、运筹优化、深度学习等技术提升激励补贴效率; 2.参与用户激励任务分发提效工作,通过对产品和用户的深入理解和分析,做好用户激励增量分层工作,提升激励任务分发效率。 3.参与激励链路动线玩法的优化,紧密配合业务,通过算法提升用户留存、时长等目标,助力公司DAU规模增长。
包括英文材料
学历+
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
因果推断+
https://web.stanford.edu/~swager/causal_inf_book.pdf
How best to understand and characterize causality is an age-old question in philosophy.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
相关职位
社招信息技术类
1、负责电商端内用户增长&营销业务的算法建模,持续优化用户拉新和促活各个环节的算法效率,包括优惠券发放、激励游戏、站内营销活动、会员定价等场景。 2、和产品、运营、数据、工程等团队深度合作,以数据驱动和目标结果导向,完成电商用户增长目标持续突破。
更新于 2025-04-16
社招D12850
1、参与优化快手内容生态,基于大模型内容理解搭建更准确的内容质量评估,设计合理的分发机制,促进健康内容生态; 2、参与图文、中视频、合集等不同题材和形态的内容分发优化,做好内容和人的链接,提升用户粘性和满意度; 3、设计合理的分发机制和激励算法,激励优质创作者持续生产好内容,提升作者活跃度; 4、基于快手的海量用户和商家数据,探索和研究最前沿的技术,结合实际应用场景,产出有效的业界领先的技术解决方案。
更新于 2025-08-29
社招2年以上核心本地商业-业
1. 负责美团核心本地商业营销增长算法策略研发,从用户全生命周期角度,构建增长算法策略体系(拉新、沉流召回、老客提频、LTV等),运用因果推断、运筹优化、深度学习提升营销效率,促进用户交易行为增长。 2. 负责核心本地商业激励/补贴定价算法研发、落地和迭代,提升资源利用效率,为美团带来更多的增量订单和增量GTV。 3. 深入思考业务价值,与产品、业务团队密切配合,打造和完善行业一流的营销增长算法体系,通过算法策略不断提升营销效率。
更新于 2024-11-07