小米推荐算法工程师
社招全职5年以上A142757地点:南京状态:招聘
任职要求
任职要求 • 工作经验:5年以上推荐系统相关工作经验 • 技术技能: 1.熟练掌握Python、Java等编程语言,具备良好的编码能力和数据处理能力。 2.熟悉常用机器学习算法和深度学习框架,如TensorFlow、PyTorch等,能够独立设计和实现推荐算法。 3.对大规模数据处理和分析有丰富的经验,熟悉Hadoop、Spark等大数据处理工具。
工作职责
岗位职责: 1. 方向一:负责应用商店、游戏中心推荐系统的算法设计与优化,包括但不限于应用APP推荐、游戏APP推荐、游戏内容推荐等场景 2. 方向二:负责信息流类型内容产品的推荐系统开发与优化 3.对推荐算法有着较为全面的认知,了解各类推荐领域相关算法,能够自主负责整套推荐系统架构的设计与算法开发工作 4.跟踪和研究推荐算法的前沿技术,如大模型推荐等,并将其应用于实际业务中,推动推荐系统的创新和升级 5.与业务团队紧密合作,根据业务需求和市场变化,不断调整和优化推荐策略,提高推荐效果和用户体验
包括英文材料
推荐系统+
[英文] Recommender Systems
https://www.d2l.ai/chapter_recommender-systems/index.html
Recommender systems are widely employed in industry and are ubiquitous in our daily lives.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
相关职位
社招2年以上A4834
1、负责抖音支付相关业务推荐算法工作,和产品、运营紧密合作,深度理解业务发展,共同制定长短期业务目标; 2、将前沿的机器学习技术应用到抖音支付场景业务,提高匹配的效率,持续优化用户的支付产品体验; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、learning to rank等,结合业务的实际问题做好技术的探索和研究。
更新于 2022-09-20
社招算法开发岗
1.参与大规模用户的电商推荐算法优化,提升点击率.购买率等核心指标; 2.参与大规模深度学习的技术研发工作,包括但不限于深度学习模型设计与优化.强化学习.迁移学习.图神经网络等的算法和系统研发等; 3.分析海量用户行为数据,增加有效的模型特征,挖掘用户兴趣,优化排序机制策略。
更新于 2025-07-02
社招3年以上算法开发岗
1.负责优惠券推荐算法,参与召回,排序和重排策略相关工作;利用多目标、用户行为序列、多场景等技术提高模型的精度,促进业务增长; 2.负责智能营销、动态定价、折扣等算法,包括红包、优惠券、因果推断定价和资源运筹优化等; 3.持续跟进业界前沿算法和创新应用,包括不限于因果推断、模型可解释、大语言模型等在智能营销的应用。
更新于 2025-07-02