小米顶尖应届-多模态端到端算法工程师-自动驾驶
任职要求
1. 人工智能、自然语言处理、机器学习、认知科学等相关专业硕士及以上学历; 2. 熟悉Transformer-based多模态模型结构,如BLIP-2、Flamingo、BEiT、ViT+LLaMA等; 3. 有VLM基础模型finetune经验,对latent policy / latent action建模有深入研究。 加分项: 1. 在顶会发表相关工作,尤其是VLA、latent policy、指令微调领域; 2. 有BEV-LLaVA、Drive-GPT、Latent Driver等相关系统研究或实践经验; 3. 有构建高质量V+L+A数据集经验(行为图文配对、语言行为对齐)。
工作职责
1. 研究VLM/VLA大模型的跨模态表示机制,构建适用于驾驶语境的latent policy head; 2. 探索视觉语言到行为(VL2A)的联合预训练方法,设计引导式数据生成与指令微调机制; 3. 构建视觉语言行为多模态数据集,支持高质量对齐(如视觉意图对话、轨迹文字描述); 4. 探索embedding space中的行为压缩、潜变量建模、语言驱动的轨迹解码与规划决策。 【课题名称】 多模态大模型(VLM/VLA) 【课题内容】 构建以视觉-语言-行为(VLA)联合建模为核心的大模型体系。基础模型采用大规模预训练视觉语言模型(VLM,如LLaVA、InternVL、GPT4V),通过Latent Action Modeling构建统一的感知-认知-决策抽象表示。研究如何以自然语言+视觉输入预测潜在行为意图与策略,通过领域微调(domain adaptation)与RLHF-style强化引导,打造真正具备泛化与交互理解能力的通用智能Agent。
1. 研究VLM/VLA大模型的跨模态表示机制,构建适用于驾驶语境的latent policy head; 2. 探索视觉语言到行为(VL2A)的联合预训练方法,设计引导式数据生成与指令微调机制; 3. 构建视觉语言行为多模态数据集,支持高质量对齐(如视觉意图对话、轨迹文字描述); 4. 探索embedding space中的行为压缩、潜变量建模、语言驱动的轨迹解码与规划决策。 【课题名称】 多模态大模型(VLM/VLA) 【课题内容】 构建以视觉-语言-行为(VLA)联合建模为核心的大模型体系。基础模型采用大规模预训练视觉语言模型(VLM,如LLaVA、InternVL、GPT4V),通过Latent Action Modeling构建统一的感知-认知-决策抽象表示。研究如何以自然语言+视觉输入预测潜在行为意图与策略,通过领域微调(domain adaptation)与RLHF-style强化引导,打造真正具备泛化与交互理解能力的通用智能Agent。
1. 设计适用于自动驾驶任务的Diffusion-based行为生成模型,涵盖轨迹预测、控制输出、长时规规划; 2. 研究基于图像和高维环境语义输入的扩散过程,支持条件生成与多模态控制分布建模; 3. 推动该方向模型从仿真到实车的部署,包括实时性优化、鲁棒性评估与反馈机制构建。 【课题名称】 Diffusion-based Nueral Planner 【课题内容】 探索扩散生成模型在端到端自动驾驶规划中的泛化能力和多模态决策潜力。以感知输入(图像、BEV等)直接生成控制信号(steering, acceleration),或隐式轨迹规划中间表示,构建具备不确定性建模、多样性采样和高分辨率行为预测能力的决策系统。参考如DiffPlan、MotionDiffuser、Wayformer+Diffusion等工作,推动视觉到控制的生成式范式演进。
1. 设计适用于自动驾驶任务的Diffusion-based行为生成模型,涵盖轨迹预测、控制输出、长时规规划; 2. 研究基于图像和高维环境语义输入的扩散过程,支持条件生成与多模态控制分布建模; 3. 推动该方向模型从仿真到实车的部署,包括实时性优化、鲁棒性评估与反馈机制构建。 【课题名称】 Diffusion-based Nueral Planner 【课题内容】 探索扩散生成模型在端到端自动驾驶规划中的泛化能力和多模态决策潜力。以感知输入(图像、BEV等)直接生成控制信号(steering, acceleration),或隐式轨迹规划中间表示,构建具备不确定性建模、多样性采样和高分辨率行为预测能力的决策系统。参考如DiffPlan、MotionDiffuser、Wayformer+Diffusion等工作,推动视觉到控制的生成式范式演进。
1. 研发端到端全模态理解和推理大模型核心技术,在模型结构、对齐策略、指令微调、偏好对齐、多阶段渐进式学习训练策略、推理能力增强(关系推理、因果推理、常识推理)等方面做出创新突破,达到业内一流; 2. 研发视觉理解和推理大模型核心技术,在图像理解,视频理解,视觉推理能力增强(关系推理、因果推理、常识推理),GUI屏幕感知和推理、端到端图像翻译等方向创新突破,达到业内一流; 3. 优化语音识别大模型的上下文感知能力,通过送入交互历史信息提升语音识别准确率;优化语音识别大模型的热词感知能力,通过送入相关热词提升语音识别准确率;优化语音多模态理解大模型的SpeechEncoder,提升语音理解大模型的语音理解能力和声音理解能力,包括语音内容、情感、性别、声音事件、音乐风格等;在用户跟智能体对话的过程中,检测用户的表达完整性,从而加快系统响应速度且不带来更多的误截断;在语音对话模型中,检测用户交互的对象,从而提升打断的有效性和系统交互的响应速度; 4. 端到端全模态理解和推理、视觉理解、语音理解等,建立比较广泛的业界影响力,论文引用数300+、主流算法竞赛/排行榜TOP1、开源Star 2000+等; 5. 端到端全模态理解和推理、视觉理解、语音理解等,落地在小米核心业务场景,提升核心产品竞争力和用户智能体验,包括手机(OS/小爱)、汽车、生态链等。 【课题名称】 端到端全模态理解和推理大模型研究与应用 【课题内容】 1. 研究端到端全模态理解和推理大模型的核心技术,产出突破性成果,在小米核心业务场景落地;输入文本、图像、视频、语音等模态,输出文本、语音等模态;探索全模态信息感知能力;探索全模态混合推理思维链;探索全模态思维强化; 2. 研究视觉理解和推理的核心技术和应用,包括图像理解与推理、长视频理解与推理、屏幕感知和端到端图像翻译等; 3. 研究语音理解大模型的感知关键技术,包括有效利用场景、上下文、个性化信息更好的进行音频内容的转写以及副语言信息的提取,用户表述完整性检测等,提升流式交互系统的响应速度和理解准确性等。