小米机器视觉开发工程师
社招全职A160317地点:武汉状态:招聘
任职要求
专业技能 - 编程基础 - 精通 Python(主流库:OpenCV, Pillow, Scikit-image, NumPy) - 掌握 C++(工业领域高性能系统开发) - 熟悉 MATLAB(算法原型验证) - 计算机视觉算法 - 传统方法: - 特征提取算法:SIFT(尺度不变特征变换),HOG(方向梯度直方图),Haar 特征 - 分类与匹配算法:SVM(支持向量机),决策树 / 随机森林 - 深度学习: - 模型应用:CNN(分类/检测)、YOLO、Mask R-CNN、U-Net(分割) - 框架实战:PyTorch, TensorFlow, Keras - 工具与框架 - 开源库:OpenCV(必备)、Dlib, VLFeat - 工业软件:Halcon, VisionPro, Cognex(熟悉可加分) - 点云处理:PCL(Point Cloud Library), Open3D - 硬件与系统集成 - 相机技术:CCD/CMOS传感器、镜头选型、光源设计 - 协议掌握:GigE Vision, USB3 Vision, GenICam - 工业总线:EtherCAT, PROFINET(与PLC协同) - 嵌入式部署:TensorRT, OpenVINO(模型优化加速) - 全流程开发经验 - 需求分析 → 方案设计 → 算法选型 → 代码实现 → 系统测试 → 现场部署 - 加分技能: - 熟悉海康VM平台(机器人&视觉检测)应用开发 软性素质 - 问题拆解与创新思维 - 将模糊的工业需求(如“检测产品缺陷”)转化为可量化的技术指标 - 针对场景创新算法(如设计抗反光的光学方案) - 跨领域协作能力 - 与机械/电气工程师沟通硬件集成 - 向非技术人员解释技术瓶颈 - 极致细节关注 - 识别图像中的噪点、畸变、边缘模糊等细微问题 - 数据标注质量把控(避免“垃圾进,垃圾出”) - 应对现场环境突变(温度/振动影响成像) - 持续跟进新技术(如Transformer在视觉的应用)
工作职责
- 视觉系统设计与开发 - 方案设计与硬件选型 - 根据应用场景(如工业检测、机器人导航)设计视觉系统架构,完成相机(工业相机/RGB-D)、镜头、光源及滤镜的选型与光学方案验证,解决眩光、阴影等干扰问题。 - 制定多角度照明策略,优化图像采集质量,确保被测物特征清晰可识别。 - 软件架构搭建 - 开发上位机软件界面(使用Qt/WPF/WM等工具),集成图像采集、处理及控制逻辑模块。 - 封装算法SDK,适配嵌入式或边缘计算平台,优化资源调度与执行效率。 - 算法开发与优化 - 传统与深度学习算法应用 - 开发图像处理算法(如目标定位、OCR、尺寸测量、缺陷检测),使用OpenCV/Halcon/VisionPro等库实现功能模块。 - 研究闭环检测、传感器融合(VIO)、三维重建(SLAM/TSDF)等前沿技术,提升系统精度。 - 系统集成与调试 - 跨设备协同开发 - 与电气/机械工程师协作,将视觉系统集成到PLC控制的生产线或机器人中,制定通信协议与流程逻辑。 - 在客户现场调试系统,解决定位偏差、漏检误检等问题,确保系统稳定运行 - 多传感器融合 - 实现视觉与IMU、激光雷达等传感器的数据融合,提升定位或检测可靠性(如自动驾驶感知、机器人导航) - 技术文档与支持 - 编写设计方案、测试报告及操作手册,沉淀技术标准。 - 培训客户或操作人员,提供后期技术升级与故障排查支持。 - 技术研究与创新 - 跟踪计算机视觉领域前沿进展(如神经辐射场、端到端检测模型),评估新技术落地可行性。 - 主导技术模块复用库开发,提升团队效率。
包括英文材料
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
NumPy+
https://numpy.org/doc/stable/user/absolute_beginners.html
NumPy (Numerical Python) is an open source Python library that’s widely used in science and engineering.
[英文] NumPy - Learn
https://numpy.org/learn/
Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
https://www.kaggle.com/code/themlphdstudent/learn-numpy-numpy-50-exercises-and-solution
This kernel uses exercises of NumPy from the Machine Learning Plus webpage
https://www.youtube.com/watch?v=KHoEbRH46Zk
If you've heard of Pandas and NumPy, you may think one is simply a superset of the other.
https://www.youtube.com/watch?v=QUT1VHiLmmI
Learn the basics of the NumPy library in this tutorial for beginners.
https://www.youtube.com/watch?v=VXU4LSAQDSc
This video serves as an introduction to the NumPy Python library.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
MATLAB+
https://matlabacademy.mathworks.com/?page=1&sort=featured
Learn MATLAB and Simulink through interactive, in-product exercises
https://www.mathworks.com/help/matlab/getting-started-with-matlab.html
Millions of engineers and scientists worldwide use MATLAB® to analyze and design the systems and products transforming our world.
https://www.youtube.com/watch?v=7f50sQYjNRA
Learn the fundametnals of MATLAB in this tutorial for engineers, scientists, and students.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
CNN+
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
Convolutional Neural Network (CNN) forms the basis of computer vision and image processing.
[英文] CNN Explainer
https://poloclub.github.io/cnn-explainer/
Learn Convolutional Neural Network (CNN) in your browser!
https://www.deeplearningbook.org/contents/convnets.html
Convolutional networks(LeCun, 1989), also known as convolutional neuralnetworks, or CNNs, are a specialized kind of neural network for processing data.
https://www.youtube.com/watch?v=2xqkSUhmmXU
MIT Introduction to Deep Learning 6.S191: Lecture 3 Convolutional Neural Networks for Computer Vision
R+
[英文] R Tutorial
https://www.w3schools.com/r/
R is often used for statistical computing and graphical presentation to analyze and visualize data.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
Keras+
https://keras.io/getting_started/intro_to_keras_for_engineers/
Keras 3 is a deep learning framework works with TensorFlow, JAX, and PyTorch interchangeably.
Open3D+
[英文] Introduction
https://www.open3d.org/docs/release/introduction.html
Open3D: A Modern Library for 3D Data Processing
https://www.youtube.com/watch?v=zF3MreN1w6c
Inside my school and program, I teach you my system to become an AI engineer or freelancer.
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
相关职位

社招2年以上
计算机视觉算法工程师 1、负责计算机视觉相关技术的研发和实现,包括图像分割、目标检测、目标识别、图像理解等。 2、负责流式视频理解相关技术的研发与实现。 3、持续优化算法性能并完成部署,跟踪计算机视觉领域的前沿技术。 机器人视觉算法工程师 1、负责机器人视觉平台的设计、搭建与调试。 2、基于ROS等进行算法的快速开发、仿真及验证。 3、实现基于视觉的机器人交互、操作、运控。
社招Software
任职要求: · 计算机,电子通信,自动化等相关专业; · 熟悉Linux环境和嵌入式开发,熟练使用c/c++或其他编程语言; · 有较强的软件调试和独立解决问题的能力; · 求知欲强, 有快速学习新领域的能力;
更新于 2025-08-14